Home
Class 9
MATHS
Rationalise the denominator : (5)/(sqrt(...

Rationalise the denominator : `(5)/(sqrt(11)+4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator of the expression \(\frac{5}{\sqrt{11} + 4}\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Denominator**: The denominator is \(\sqrt{11} + 4\). 2. **Find the Conjugate**: The conjugate of \(\sqrt{11} + 4\) is \(\sqrt{11} - 4\). 3. **Multiply by the Conjugate**: To rationalize the denominator, multiply both the numerator and the denominator by the conjugate: \[ \frac{5}{\sqrt{11} + 4} \cdot \frac{\sqrt{11} - 4}{\sqrt{11} - 4} \] 4. **Rewrite the Expression**: This gives us: \[ \frac{5(\sqrt{11} - 4)}{(\sqrt{11} + 4)(\sqrt{11} - 4)} \] 5. **Simplify the Denominator**: The denominator can be simplified using the difference of squares formula \(a^2 - b^2\): \[ (\sqrt{11})^2 - (4)^2 = 11 - 16 = -5 \] 6. **Combine the Numerator**: The numerator becomes: \[ 5(\sqrt{11} - 4) = 5\sqrt{11} - 20 \] 7. **Final Expression**: Now, we can write the expression as: \[ \frac{5\sqrt{11} - 20}{-5} \] 8. **Simplify the Expression**: Dividing each term in the numerator by \(-5\): \[ -\sqrt{11} + 4 = 4 - \sqrt{11} \] ### Final Answer: The rationalized form of \(\frac{5}{\sqrt{11} + 4}\) is: \[ 4 - \sqrt{11} \]

To rationalize the denominator of the expression \(\frac{5}{\sqrt{11} + 4}\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Denominator**: The denominator is \(\sqrt{11} + 4\). 2. **Find the Conjugate**: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator of (1)/(sqrt(5)) .

Rationalise the denominator of 2/(sqrt(3))

Rationalise the denominator of 1/(sqrt(2))

Rationalize the denominator of (1)/(sqrt(2))

Rationalise the denominator of (11)/(5+sqrt(3))

Rationalise the denominator of (1)/(7+4sqrt(3)) .

Rationalise the denominator of 2/(sqrt(3)) .

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(2+sqrt(3))