Home
Class 9
MATHS
If a+bsqrt(5)=(4-3sqrt(5))/(4+3sqrt(5)),...

If `a+bsqrt(5)=(4-3sqrt(5))/(4+3sqrt(5))`, then find the values of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a + b\sqrt{5} = \frac{4 - 3\sqrt{5}}{4 + 3\sqrt{5}} \), we will first rationalize the right-hand side (RHS). ### Step 1: Rationalizing the RHS We need to multiply the numerator and denominator of the RHS by the conjugate of the denominator, which is \( 4 - 3\sqrt{5} \). \[ \text{RHS} = \frac{(4 - 3\sqrt{5})(4 - 3\sqrt{5})}{(4 + 3\sqrt{5})(4 - 3\sqrt{5})} \] ### Step 2: Expanding the Numerator Now, we will expand the numerator: \[ (4 - 3\sqrt{5})^2 = 4^2 - 2 \cdot 4 \cdot 3\sqrt{5} + (3\sqrt{5})^2 = 16 - 24\sqrt{5} + 45 = 61 - 24\sqrt{5} \] ### Step 3: Expanding the Denominator Next, we will expand the denominator using the difference of squares: \[ (4 + 3\sqrt{5})(4 - 3\sqrt{5}) = 4^2 - (3\sqrt{5})^2 = 16 - 45 = -29 \] ### Step 4: Putting it Together Now we can write the RHS as: \[ \text{RHS} = \frac{61 - 24\sqrt{5}}{-29} = -\frac{61}{29} + \frac{24\sqrt{5}}{29} \] ### Step 5: Comparing LHS and RHS Now we have: \[ a + b\sqrt{5} = -\frac{61}{29} + \frac{24}{29}\sqrt{5} \] From this, we can compare coefficients: - For the constant term (without \(\sqrt{5}\)), we have: \[ a = -\frac{61}{29} \] - For the coefficient of \(\sqrt{5}\), we have: \[ b = \frac{24}{29} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = -\frac{61}{29}, \quad b = \frac{24}{29} \] ---

To solve the equation \( a + b\sqrt{5} = \frac{4 - 3\sqrt{5}}{4 + 3\sqrt{5}} \), we will first rationalize the right-hand side (RHS). ### Step 1: Rationalizing the RHS We need to multiply the numerator and denominator of the RHS by the conjugate of the denominator, which is \( 4 - 3\sqrt{5} \). \[ \text{RHS} = \frac{(4 - 3\sqrt{5})(4 - 3\sqrt{5})}{(4 + 3\sqrt{5})(4 - 3\sqrt{5})} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

((4 +sqrt5)/(4-sqrt5)) +((4-sqrt5)/(4+sqrt5)) =?

If (4/5)^(n) = sqrt((5/4)^(3)) , then n = ?

If 3tanA-5cosB=sqrt(3) and B=90^(@) , find the value of A.

If A equiv (2, 3, 4), B equiv (3, 4, 5). The direction cosine of a line are (1/sqrt(3), 1/sqrt(3), 1/sqrt(3)) Now integral value of the projection of AB on the given line is _______.

If (4+3sqrt5)/(4-3sqrt5)=a+bsqrt5 ,a, b are rational numbers, them (a, b)=

Simplify: (4+\ sqrt(5))/(4-sqrt(5))+(4-\ sqrt(5))/(4+\ sqrt(5))

4.Find the value of "1/(sqrt5+sqrt2)