Home
Class 11
MATHS
For any 3 sets A, B and C, prove that : ...

For any 3 sets A, B and C, prove that :
(i) `A-(B cupC)=(A-B)cap(A-C)`
(ii) `A-(BcapC)=(A-B)cup(A-C)`
(iii) `A cap(B-C)= (A cap B) - (A cap C)`
(iv) `(A cupB)-C=(A-C)cup(B-C)`
(v) `A cap (B DeltaC)=(A capB)Delta(A capC)`.

Text Solution

Verified by Experts

(i) `A-(BcupC)`
`=Acap(BcupC)'" "(becauseX-Y=X capY')`
`=Acap(B'capC')=(AcapB')cap(A capC)`
`=(A-B)cap(A-C)`.
(ii) `A-(BcapC)`
`=Acap(BcapC)'`
`=A cap(B'cupC')`
`= (A cap B')cup (A cap C')` (From distributive law)
`= (A-B) cup (A-C)`.
(iii) `A cap(B-C)`
`=A cap(BcapC')" "(becauseX-Y=XcapY')`
`=(AcapB)capC'`(From associative law)

`= phicup[(AcapB)capC']`
`=[(AcapB)capA']cup[(AcapB)capC']`
`=(A capB)cap (A' cup C')` (From distributive law)
`=(AcapB)cap(AcapC)'`
`=(AcapB)-(A capC)" "(because XcapY'=X-Y)`
(iv) `(A cupB)-C`
`=(A cup B)capC'" "(X-Y=X capY')`
`=(A capC')cup (B cap C')` (From distributive law)
`= (A-C)cup(B-C)" "(becauseX capY'=X-Y)`
(v) `A cap(B DeltaC)`
`=A cap[(B-C)cup(C-B)]`
`[Acap(B-C)]cup[Acap(C-B)]` (From distributive law)
`= [(A capB)-(AcapC)]cup[(AcapC)-(AcapB)]`
`=(A capB)Delta(AcapC)`.
Promotional Banner

Topper's Solved these Questions

  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1A|7 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1B|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|7 Videos

Similar Questions

Explore conceptually related problems

For any two sets A and B, prove that : (i) (A capB)cup(A-B)=A (ii) A cup(B-A)=A cupB .

For any two sets A and B, prove that : (i) A - (A-B)=A capB (ii) A cap (A' cup B) = A cap B .

Prove A cup (B cap C)=(A cup B) cap(A cup C)

For sets A, B,C , show that (A-B) cup (A-C) = A -(B cup C)

Prove (A cap B)'=(A' cup B')

Use the given diagram to find: (i) A cup (B cap C) (ii) B-(A -C) (iii) A-B (iv) A cap B' is A cap B' = A -B ?

If A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8} and C = {3, 4, 5, 6}, verify: (i) A-(B cup C) =(A-B) cap (A-C) (ii) A-(B cap C) =(A-B) cup (A-C)

If A = {5, 6, 7, 8, 9}, B={x : 3 lt x lt 8 " and " x in W} and C={x:x le 5 " and " x in N} . Find : (i) A cup B and (A cup B) cup C (ii) B cup C and A cup (B cup C) (iii) A cap B and (A cap B) cap C (iv) B cap C and A cap (B cap C) Is (A cup B) cup C = A cup (B cup C) ? Is (A cap B) cap C) = A cap (B cap C) ?

If A{1,2,3},B={3,4}and C={4,5,6} , then find the each of the following : (i) A cap(B cupC) (ii) (A-B)cupC (iii) (A cupB)-C (iv) (A cap B)cup C .

If A and B are stes, then A cap (A cup B)=