Home
Class 11
MATHS
If X={8^(n)-7n-1, n inN} and Y={49(n-1),...

If `X={8^(n)-7n-1, n inN}` and `Y={49(n-1), n in N}`. Prove that `X` is a subset of `Y`.

Promotional Banner

Topper's Solved these Questions

  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1D|28 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1E|15 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1B|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos
  • STATISTICS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|7 Videos

Similar Questions

Explore conceptually related problems

If X= {8^n-7n-1,n in N} and Y= {49(n-1);ninN} , then prove that X is a subset of Y

If X={8^n-7n-1 | n in N} and Y={49n-49| n in N} . Then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN} , then X uu Y equals

Statement -I: X={8n+1:n inN},then XnnY=Y, Y={(2n+1)^2:n in N} because statement -II:x is a subset of y

If f(x) = (a-x^n)^(1/n), a > 0 and n in N , then prove that f(f(x)) = x for all x.

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

If a=x^(m+n)\ y^l,\ b=x^(n+l)\ y^m and c=x^(l+m)y^n , prove that a^(m-n)\ b^(n-l)\ c^(l-m\ )=1

For each of the following pairs of sets , identify the disjoint and overlapping sets: G= { x: x = 8n, n in N and n lt 7 } and H= {x: x = 9 n , n in N and n lt 7 }