Home
Class 11
MATHS
If f(x)=2(1+sin x), then evaluate f((pi)...

If `f(x)=2(1+sin x),` then evaluate `f((pi)/(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( f\left(\frac{\pi}{2}\right) \) for the function \( f(x) = 2(1 + \sin x) \), follow these steps: ### Step-by-Step Solution: 1. **Identify the function**: We have the function defined as: \[ f(x) = 2(1 + \sin x) \] 2. **Substitute \( x \) with \( \frac{\pi}{2} \)**: We need to evaluate \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = 2\left(1 + \sin\left(\frac{\pi}{2}\right)\right) \] 3. **Calculate \( \sin\left(\frac{\pi}{2}\right) \)**: We know from trigonometric values that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] 4. **Substitute the value of \( \sin\left(\frac{\pi}{2}\right) \)**: Now, substitute this value back into the function: \[ f\left(\frac{\pi}{2}\right) = 2\left(1 + 1\right) \] 5. **Simplify the expression**: Simplifying further gives: \[ f\left(\frac{\pi}{2}\right) = 2 \times 2 = 4 \] 6. **Final answer**: Therefore, the value of \( f\left(\frac{\pi}{2}\right) \) is: \[ f\left(\frac{\pi}{2}\right) = 4 \]

To evaluate \( f\left(\frac{\pi}{2}\right) \) for the function \( f(x) = 2(1 + \sin x) \), follow these steps: ### Step-by-Step Solution: 1. **Identify the function**: We have the function defined as: \[ f(x) = 2(1 + \sin x) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

The area bounded by the graph of y=f(x), f(x) gt0 on [0,a] and x-axis is (a^(2))/(2)+(a)/(2) sin a +(pi)/(2) cos a then find the value of f((pi)/(2)) .

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be: