Home
Class 11
MATHS
If f(x)=x^(3)-(1)/(x^(3)) , then find t...

If `f(x)=x^(3)-(1)/(x^(3))` , then find the value of `f(x)+f(-x)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x) + f(-x) \) given that \( f(x) = x^3 - \frac{1}{x^3} \). ### Step-by-Step Solution: 1. **Write down the function:** \[ f(x) = x^3 - \frac{1}{x^3} \] 2. **Find \( f(-x) \):** To find \( f(-x) \), we replace \( x \) with \( -x \) in the function: \[ f(-x) = (-x)^3 - \frac{1}{(-x)^3} \] Simplifying this gives: \[ f(-x) = -x^3 - \left(-\frac{1}{x^3}\right) = -x^3 + \frac{1}{x^3} \] 3. **Add \( f(x) \) and \( f(-x) \):** Now we add \( f(x) \) and \( f(-x) \): \[ f(x) + f(-x) = \left( x^3 - \frac{1}{x^3} \right) + \left( -x^3 + \frac{1}{x^3} \right) \] Combining the terms: \[ f(x) + f(-x) = x^3 - \frac{1}{x^3} - x^3 + \frac{1}{x^3} \] 4. **Simplify the expression:** Notice that \( x^3 \) cancels with \( -x^3 \) and \( -\frac{1}{x^3} \) cancels with \( \frac{1}{x^3} \): \[ f(x) + f(-x) = 0 \] Thus, the final result is: \[ f(x) + f(-x) = 0 \]

To solve the problem, we need to find the value of \( f(x) + f(-x) \) given that \( f(x) = x^3 - \frac{1}{x^3} \). ### Step-by-Step Solution: 1. **Write down the function:** \[ f(x) = x^3 - \frac{1}{x^3} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Ilf f(x)={x^3, x 2 , then find the value of f(-1)+f(1)+f(3) . Also find the value (s) of x for which f(x)=2.

If f(x)=x^2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

If f(x)=x^3-frac{1}{x^(3)} find the value of f(x)+f(frac{1}{x})

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).