Home
Class 11
MATHS
Let (x) is a real function, defines as f...

Let (x) is a real function, defines as `f(x) =(x-1)/(x+1),` then prove that `f(2x)=(3f(x)+1)/(f(x)+3).`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( f(2x) = \frac{3f(x) + 1}{f(x) + 3} \) where \( f(x) = \frac{x-1}{x+1} \), we will follow these steps: ### Step 1: Calculate \( f(2x) \) We start by substituting \( 2x \) into the function \( f \): \[ f(2x) = \frac{2x - 1}{2x + 1} \] ### Step 2: Express \( x \) in terms of \( f(x) \) From the definition of \( f(x) \): \[ f(x) = \frac{x - 1}{x + 1} \] We can rearrange this to express \( x \) in terms of \( f(x) \): \[ f(x)(x + 1) = x - 1 \] Expanding this gives: \[ xf(x) + f(x) = x - 1 \] Rearranging terms: \[ xf(x) - x = -1 - f(x) \] Factoring out \( x \): \[ x(f(x) - 1) = -1 - f(x) \] Thus, \[ x = \frac{-1 - f(x)}{f(x) - 1} \] ### Step 3: Substitute \( x \) into \( f(2x) \) Now, we substitute \( x \) back into the expression for \( f(2x) \): \[ f(2x) = f\left(2 \cdot \frac{-1 - f(x)}{f(x) - 1}\right) \] Calculating \( 2x \): \[ 2x = 2 \cdot \frac{-1 - f(x)}{f(x) - 1} = \frac{-2 - 2f(x)}{f(x) - 1} \] Now substituting \( 2x \) into \( f \): \[ f(2x) = \frac{\left(\frac{-2 - 2f(x)}{f(x) - 1}\right) - 1}{\left(\frac{-2 - 2f(x)}{f(x) - 1}\right) + 1} \] ### Step 4: Simplify the expression The numerator becomes: \[ \frac{-2 - 2f(x) - (f(x) - 1)}{f(x) - 1} = \frac{-2 - 2f(x) - f(x) + 1}{f(x) - 1} = \frac{-3f(x) - 1}{f(x) - 1} \] The denominator becomes: \[ \frac{-2 - 2f(x) + (f(x) - 1)}{f(x) - 1} = \frac{-2 - 2f(x) + f(x) - 1}{f(x) - 1} = \frac{-f(x) - 3}{f(x) - 1} \] Thus, we have: \[ f(2x) = \frac{\frac{-3f(x) - 1}{f(x) - 1}}{\frac{-f(x) - 3}{f(x) - 1}} = \frac{-3f(x) - 1}{-f(x) - 3} \] ### Step 5: Rearranging the expression This simplifies to: \[ f(2x) = \frac{3f(x) + 1}{f(x) + 3} \] ### Conclusion Thus, we have proved that: \[ f(2x) = \frac{3f(x) + 1}{f(x) + 3} \]

To prove that \( f(2x) = \frac{3f(x) + 1}{f(x) + 3} \) where \( f(x) = \frac{x-1}{x+1} \), we will follow these steps: ### Step 1: Calculate \( f(2x) \) We start by substituting \( 2x \) into the function \( f \): \[ f(2x) = \frac{2x - 1}{2x + 1} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x) is a real-valued function defined as f(x)=In (1-sinx), then the graph of f(x) is

If f(x)=x+1/x , prove that [f(x)]^3=f(x^3)+3f(1/x)dot .

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

if f(x) is a real valued function defined as f(x)={min{|x|,1/x^2,1/x^3},x != 01, x=0 then range of f(x) is

A function f: R to R is defined as f(x)=4x-1, x in R, then prove that f is one - one.

The function f:R→R defined by f(x)=(x−1)(x−2)(x−3) is

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :