Home
Class 11
MATHS
If for xne0,af (x)+bf((1)/(x))=1/x-5,ane...

If for `xne0,af (x)+bf((1)/(x))=1/x-5,aneb,` then f (x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a f(x) + b f\left(\frac{1}{x}\right) = \frac{1}{x} - 5 \) for \( f(x) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \frac{1}{x} \) We start by replacing \( x \) with \( \frac{1}{x} \) in the original equation. This gives us: \[ a f\left(\frac{1}{x}\right) + b f(x) = x - 5 \] ### Step 2: Write down the two equations Now we have two equations: 1. \( a f(x) + b f\left(\frac{1}{x}\right) = \frac{1}{x} - 5 \) (Equation 1) 2. \( a f\left(\frac{1}{x}\right) + b f(x) = x - 5 \) (Equation 2) ### Step 3: Multiply the equations Next, we will multiply Equation 1 by \( b \) and Equation 2 by \( a \): - From Equation 1: \[ b(a f(x) + b f\left(\frac{1}{x}\right)) = b\left(\frac{1}{x} - 5\right) \] This simplifies to: \[ ab f(x) + b^2 f\left(\frac{1}{x}\right) = \frac{b}{x} - 5b \quad \text{(Equation 3)} \] - From Equation 2: \[ a(a f\left(\frac{1}{x}\right) + b f(x)) = a(x - 5) \] This simplifies to: \[ a^2 f\left(\frac{1}{x}\right) + ab f(x) = ax - 5a \quad \text{(Equation 4)} \] ### Step 4: Subtract the equations Now we will subtract Equation 4 from Equation 3: \[ (ab f(x) + b^2 f\left(\frac{1}{x}\right)) - (a^2 f\left(\frac{1}{x}\right) + ab f(x)) = \left(\frac{b}{x} - 5b\right) - (ax - 5a) \] This simplifies to: \[ (b^2 - a^2) f\left(\frac{1}{x}\right) = \frac{b}{x} - ax - 5b + 5a \] ### Step 5: Solve for \( f\left(\frac{1}{x}\right) \) Rearranging gives us: \[ f\left(\frac{1}{x}\right) = \frac{\frac{b}{x} - ax - 5b + 5a}{b^2 - a^2} \] ### Step 6: Substitute back to find \( f(x) \) Now, we can substitute \( x \) back into the expression to find \( f(x) \). We know that \( f\left(\frac{1}{x}\right) \) can be rewritten in terms of \( f(x) \). ### Final Expression for \( f(x) \) After some algebraic manipulation, we can express \( f(x) \) as: \[ f(x) = \frac{b(x - 5) - a\left(\frac{1}{x} - 5\right)}{b^2 - a^2} \]

To solve the equation \( a f(x) + b f\left(\frac{1}{x}\right) = \frac{1}{x} - 5 \) for \( f(x) \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \frac{1}{x} \) We start by replacing \( x \) with \( \frac{1}{x} \) in the original equation. This gives us: \[ a f\left(\frac{1}{x}\right) + b f(x) = x - 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

if for nonzero x , af(x) + bf(1/x) =1/x-5 , where a!=b then f(2) =

If af(x) + bf(1/x) = x+1, x != 0 , find f(x).

If A=R-{b} and B=R-{1} and function f:AtoB is defined by f(x)=(x-a)/(x-b),aneb , then f^(-1)(x) is

If f(x)=log|x|,xne0 then f'(x) equals

If A=R-{b} and B=R-{1} and function f:AtoB is defined by f(x)=(x-a)/(x-b),aneb then f is

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

If f(x)={{:((5|x|+4tanx)/(x),xne0),(k,x=0):} , then f(x) is continuous at x = 0 for

If f(x)=log|2x|,xne0 then f'(x) is equal to

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is