Home
Class 11
MATHS
If f(x)=loge((1-x)/(1+x)); prove that f(...

If `f(x)=log_e((1-x)/(1+x));` prove that `f(a)+f(b)=f((a+b)/(1+a b))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right) \) where \( f(x) = \log_e\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Write the left-hand side We start with the left-hand side of the equation: \[ f(a) + f(b) = \log_e\left(\frac{1-a}{1+a}\right) + \log_e\left(\frac{1-b}{1+b}\right) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log(m) + \log(n) = \log(m \cdot n) \), we combine the two logarithms: \[ f(a) + f(b) = \log_e\left(\frac{1-a}{1+a} \cdot \frac{1-b}{1+b}\right) \] ### Step 3: Simplify the expression inside the logarithm Now, we simplify the expression inside the logarithm: \[ \frac{1-a}{1+a} \cdot \frac{1-b}{1+b} = \frac{(1-a)(1-b)}{(1+a)(1+b)} \] Expanding both the numerator and the denominator: - Numerator: \[ (1-a)(1-b) = 1 - a - b + ab \] - Denominator: \[ (1+a)(1+b) = 1 + a + b + ab \] Thus, we have: \[ f(a) + f(b) = \log_e\left(\frac{1 - a - b + ab}{1 + a + b + ab}\right) \] ### Step 4: Write the right-hand side Now, we compute the right-hand side: \[ f\left(\frac{a+b}{1+ab}\right) = \log_e\left(\frac{1 - \frac{a+b}{1+ab}}{1 + \frac{a+b}{1+ab}}\right) \] ### Step 5: Simplify the right-hand side We simplify the expression inside the logarithm: \[ 1 - \frac{a+b}{1+ab} = \frac{(1+ab) - (a+b)}{1+ab} = \frac{1 + ab - a - b}{1 + ab} \] \[ 1 + \frac{a+b}{1+ab} = \frac{(1+ab) + (a+b)}{1+ab} = \frac{1 + ab + a + b}{1 + ab} \] Thus, the right-hand side becomes: \[ f\left(\frac{a+b}{1+ab}\right) = \log_e\left(\frac{1 + ab - a - b}{1 + ab + a + b}\right) \] ### Step 6: Compare both sides Now we have: - Left-hand side: \[ f(a) + f(b) = \log_e\left(\frac{1 - a - b + ab}{1 + a + b + ab}\right) \] - Right-hand side: \[ f\left(\frac{a+b}{1+ab}\right) = \log_e\left(\frac{1 + ab - a - b}{1 + ab + a + b}\right) \] Since both expressions inside the logarithms are equal, we conclude that: \[ f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right) \] ### Conclusion Thus, we have proved that: \[ f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right) \]

To prove that \( f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right) \) where \( f(x) = \log_e\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Write the left-hand side We start with the left-hand side of the equation: \[ f(a) + f(b) = \log_e\left(\frac{1-a}{1+a}\right) + \log_e\left(\frac{1-b}{1+b}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log((1-x)/(1+x)) , show that f(a)+f(b)=f((a+b)/(1+ab))

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}