Home
Class 11
MATHS
If f (x) =(x-1)/(x+1), then prove that...

If f (x) `=(x-1)/(x+1),` then prove that `f{f(x)}=-1/x.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( f(f(x)) = -\frac{1}{x} \) for the function \( f(x) = \frac{x-1}{x+1} \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \frac{x-1}{x+1} \] ### Step 2: Find \( f(f(x)) \) To find \( f(f(x)) \), we need to substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{x-1}{x+1}\right) \] ### Step 3: Substitute \( f(x) \) into the function Now we replace \( x \) in \( f(x) \) with \( \frac{x-1}{x+1} \): \[ f\left(\frac{x-1}{x+1}\right) = \frac{\left(\frac{x-1}{x+1}\right) - 1}{\left(\frac{x-1}{x+1}\right) + 1} \] ### Step 4: Simplify the numerator The numerator becomes: \[ \frac{x-1}{x+1} - 1 = \frac{x-1 - (x+1)}{x+1} = \frac{x-1-x-1}{x+1} = \frac{-2}{x+1} \] ### Step 5: Simplify the denominator The denominator becomes: \[ \frac{x-1}{x+1} + 1 = \frac{x-1 + (x+1)}{x+1} = \frac{x-1+x+1}{x+1} = \frac{2x}{x+1} \] ### Step 6: Combine the results Now we can write: \[ f(f(x)) = \frac{\frac{-2}{x+1}}{\frac{2x}{x+1}} = \frac{-2}{2x} = -\frac{1}{x} \] ### Step 7: Conclusion Thus, we have shown that: \[ f(f(x)) = -\frac{1}{x} \] This completes the proof.

To prove that \( f(f(x)) = -\frac{1}{x} \) for the function \( f(x) = \frac{x-1}{x+1} \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \frac{x-1}{x+1} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(1-x) , then prove that : f[f{f(x)}]=x

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=(x-1)/(x+1),x!=-1, . then show that f(f(x))=-1/x , prove that x!=0 .

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=(x)/(x-1) , then prove that (f(a))/(f(a+1))=f(a^(2))

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot