Home
Class 11
MATHS
If f(x)=x^(2)andg(x)=2x+1 are two real ...

If f(x)`=x^(2)andg(x)=2x+1 ` are two real valued function, then evaluate :
`(f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the following expressions based on the given functions \( f(x) = x^2 \) and \( g(x) = 2x + 1 \): 1. \( (f + g)(x) \) 2. \( (f - g)(x) \) 3. \( (fg)(x) \) 4. \( \frac{f}{g}(x) \) Let's go through each step: ### Step 1: Evaluate \( (f + g)(x) \) To find \( (f + g)(x) \), we add the two functions: \[ (f + g)(x) = f(x) + g(x) \] Substituting the given functions: \[ = x^2 + (2x + 1) \] Now, combine like terms: \[ = x^2 + 2x + 1 \] ### Step 2: Evaluate \( (f - g)(x) \) To find \( (f - g)(x) \), we subtract \( g(x) \) from \( f(x) \): \[ (f - g)(x) = f(x) - g(x) \] Substituting the given functions: \[ = x^2 - (2x + 1) \] Distributing the negative sign: \[ = x^2 - 2x - 1 \] ### Step 3: Evaluate \( (fg)(x) \) To find \( (fg)(x) \), we multiply the two functions: \[ (fg)(x) = f(x) \cdot g(x) \] Substituting the given functions: \[ = x^2 \cdot (2x + 1) \] Distributing \( x^2 \): \[ = 2x^3 + x^2 \] ### Step 4: Evaluate \( \frac{f}{g}(x) \) To find \( \frac{f}{g}(x) \), we divide \( f(x) \) by \( g(x) \): \[ \frac{f}{g}(x) = \frac{f(x)}{g(x)} \] Substituting the given functions: \[ = \frac{x^2}{2x + 1} \] ### Final Answers 1. \( (f + g)(x) = x^2 + 2x + 1 \) 2. \( (f - g)(x) = x^2 - 2x - 1 \) 3. \( (fg)(x) = 2x^3 + x^2 \) 4. \( \frac{f}{g}(x) = \frac{x^2}{2x + 1} \)

To solve the problem, we need to evaluate the following expressions based on the given functions \( f(x) = x^2 \) and \( g(x) = 2x + 1 \): 1. \( (f + g)(x) \) 2. \( (f - g)(x) \) 3. \( (fg)(x) \) 4. \( \frac{f}{g}(x) \) Let's go through each step: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f(x)=sqrt(x+3) and g(x)=x^2+1 be two real functions, then find fog and gof .

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x)=x^2 and g(x)" "=" "2x" "+" "1 be two real functions. Find (f" "+" "g) (x) , (f" "" "g)" "(x) , (fg)" "(x) , (f/g)(x) .

f and g are two real valued functioned. f=ln(1-x) and g=[x] .Find (f+g)(-1),\ (fg)(0),\ (f/g)(1/2),\ (g/f)(1/2)dot

Let f(x) = x^(3) + 6x + 9 and g(x) = x+5 be two functions. Find (f+g) (x), (f-g)(x) and ((f)/(g))(x) .

Let f(x) = x^(3) + 5 and g(x) = 5x + 3 be two real functions. Find (f+g)(x)

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)