Home
Class 11
MATHS
If f(x)=x^2,\ fin d(f(1. 1)f(1))/((1. 1)...

If `f(x)=x^2,\ fin d(f(1. 1)f(1))/((1. 1)-1)` .

Text Solution

Verified by Experts

The correct Answer is:
N/a

`f(1)=1^(2)`
`f(1.1)=1.1^(2)`
`therefore(f(1.1)-1(f))/((1.1-1))=(1.1^(2)-1^(2))/(1.1-1)`
`=((1.1-1)(1.1+1))/(1.1-1)=2.1`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.3|5 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^2 , find (f(1. 1)-f(1))/((1. 1-1))

If f(x)=x^2 , find (f(1. 1)-f(1))/((1. 1-1))

If f(x)=x^(2) , then evaluate: (f(1*2)-f(1))/(1*2-1)

If f(x) -1/x , then f(a)+ f((1)/(a))=

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .

Given f(x)=4x^8 , then (a) f'(1/2)=f'(-1/2) (b) f(1/2)=-f'(-1/2) (c) f'(-1/2)=-f'(1/2) (d) f(1/2)=f'(-1/2)

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)