Home
Class 11
MATHS
1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+...

`1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3`

Text Solution

Verified by Experts

Let
`P(n) :1 .3+3.5+5.7 +……+ (2n -1)(2n+1)`
`=1/3 n(4n^(2)+6n-1)`
For n =1
`L.H.S. =1.3=3`
`R.H.S.=1/3 .1.(4.1^(2)+6.1-1)`
`=1/3(4 +6-1)=3`
`:. L.H.S. =R.H.S.`
Therefore P (n) is true for n=1
Let P (n) be true for n=k.
`p(k) : 1.3 +3.5 +5.7 +....+(2k-1)(2k+1)`
`=1/3 k(4k^(2)+6k-1)`
For n=k+1
` 1.3 +3.5+5.7 +.......`
`+(2K-1)(2K+1)+(2k+1)(2K+3)`
`=1/3k(4K^(2)+6K-1)+(2K+1)(2K+1)(2K+3)`
`(K(4K^(2)+6K-1)+3(2K+1)(2K+3))/(3)`
`=1/3(4k^(2)+18K^(2)+23k+9)`
`=1/3(k+1)(4k^(2)+14k+9)`
`=1/3(k+1)[4(K^(2)+2K+1)+6(K+1)-1]`
`=1/3(k+1)[4(K+1)^(2)+6(K+1)-1]`
`rArr` P (n) is also true for n=K+1
Hence from the principle of mathematical induction P (n) is true for all positive integers n .
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|11 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: \ 1. 3+3. 5++(2n-1)(2n+1)=(n(4n^2+6n-1))/3

(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Prove by the principle of mathematical induction that for all n belongs to N :\ 1/(1. 3)+1/(3.5)+1/(5.7)++1/((2n-1)(2n+1))=n/(2n+1)

Prove the following by using the principle of mathematical induction for all n in N : 1. 2. 3 + 2. 3. 4 + .. . + n(n + 1) (n + 2)=(n(n+1)(n+2)(n+3))/4

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))

NAGEEN PRAKASHAN ENGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise 4
  1. 1.3+2.3^2+3.3^3+..............+n.3^n=((2n-1)3^(n+1)+3)/4

    Text Solution

    |

  2. Prove by PMI that 1.2+ 2.3+3.4+....+ n(n+1) =((n)(n+1)(n+2))/3, AA n i...

    Text Solution

    |

  3. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  4. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  5. Prove the following by the principle of mathematical induction:1/2+...

    Text Solution

    |

  6. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  7. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  11. Prove by using the principle of mathemtical induction: 1^3+3^3+5^2+…+...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: 1/(...

    Text Solution

    |

  14. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  15. n(n+1)(n+5) is a multiple 3.

    Text Solution

    |

  16. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  17. Prove the following by the principle of mathematical induction: \ x...

    Text Solution

    |

  18. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  19. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  20. Prove the following by using the principle of mathematical inductio...

    Text Solution

    |