Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N` : `(2n+7)<(n+3)^2` .

Text Solution

Verified by Experts

For n=1
L.H.S `=2xx1+7=9`
R.H.S. `=(1+3)^(2)=16`
`:. " "L.H.S. lt R.H.S.`
`rArr` Given statement is true for n=1
Let given statement be true for n=k
`:. " "2k+7 lt (k+3)^(2)`
for n=K+1
`2(k+1)+7 =(2k+7)+2`
`lt (k+3)+2`
[From inequation (1)]
`=K^(2)+6k+11`
`lt (k^(2)+6K+11)+(2k+5)`
`lt K^(2)+8K+16lt (k+4)^(2)`
` rArr 2(k+1) +7 lt (K+4)^(2)`
`rArr` Given statement is also true for n=K+1
Hence from the principle of mathematical induction P (n) is true for all natural numbes n.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|11 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N : 10^(2n-1)+1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in N : n(n + 1) (n + 5) is a multiple of 3.

Prove the following by using the principle of mathematical induction for all n in N : n(n + 1) (n + 5) is a multiple of 3.

Prove the following by using the principle of mathematical induction for all n in N : x^(2n)-y^(2n) is divisible by x + y .

Prove the following by using the principle of mathematical induction for all n in N : 3^(2n+2)-8n-9 is divisible by 8.

Prove the following by using the principle of mathematical induction for all n in N : 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)+...+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

Prove the following by using the principle of mathematical induction for all n in N : 1/(3. 5)+1/(5. 7)+1/(7. 9)+...+1/((2n+1)(2n+3))=n/(3(2n+3)) .

Prove the following by using the principle of mathematical induction for all n in N : 41^n-14^n is a multiple of 27.

Prove the following by using the principle of mathematical induction for all n in N : 1 + 2 + 3 + ... + n <1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N : (1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/(n^2))=(n+1)^2

NAGEEN PRAKASHAN ENGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise 4
  1. 1.3+2.3^2+3.3^3+..............+n.3^n=((2n-1)3^(n+1)+3)/4

    Text Solution

    |

  2. Prove by PMI that 1.2+ 2.3+3.4+....+ n(n+1) =((n)(n+1)(n+2))/3, AA n i...

    Text Solution

    |

  3. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  4. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  5. Prove the following by the principle of mathematical induction:1/2+...

    Text Solution

    |

  6. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  7. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  11. Prove by using the principle of mathemtical induction: 1^3+3^3+5^2+…+...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: 1/(...

    Text Solution

    |

  14. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  15. n(n+1)(n+5) is a multiple 3.

    Text Solution

    |

  16. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  17. Prove the following by the principle of mathematical induction: \ x...

    Text Solution

    |

  18. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  19. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  20. Prove the following by using the principle of mathematical inductio...

    Text Solution

    |