Home
Class 11
MATHS
Find the modulus and argument of the fol...

Find the modulus and argument of the following :
(i) `-sqrt (3)+i`
(ii) `-1-isqrt(3)`
(iii) `5+12i`
(iv) `3(cos300^(@)-isin30^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the question step by step. ### Question: Find the modulus and argument of the following: (i) \(-\sqrt{3} + i\) (ii) \(-1 - i\sqrt{3}\) (iii) \(5 + 12i\) (iv) \(3(\cos 300^\circ - i \sin 30^\circ)\) --- ### (i) For \(-\sqrt{3} + i\): 1. **Find the modulus**: \[ |z| = \sqrt{x^2 + y^2} = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] 2. **Find the argument**: \[ \tan \theta = \frac{y}{x} = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}} \] This corresponds to an angle in the second quadrant: \[ \theta = 150^\circ \] **Final answer for (i)**: Modulus = 2, Argument = \(150^\circ\) --- ### (ii) For \(-1 - i\sqrt{3}\): 1. **Find the modulus**: \[ |z| = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Find the argument**: \[ \tan \theta = \frac{y}{x} = \frac{-\sqrt{3}}{-1} = \sqrt{3} \] This corresponds to an angle in the third quadrant: \[ \theta = 240^\circ \] **Final answer for (ii)**: Modulus = 2, Argument = \(240^\circ\) --- ### (iii) For \(5 + 12i\): 1. **Find the modulus**: \[ |z| = \sqrt{x^2 + y^2} = \sqrt{(5)^2 + (12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] 2. **Find the argument**: \[ \tan \theta = \frac{y}{x} = \frac{12}{5} \] Thus, \(\theta = \tan^{-1}\left(\frac{12}{5}\right)\). **Final answer for (iii)**: Modulus = 13, Argument = \(\tan^{-1}\left(\frac{12}{5}\right)\) --- ### (iv) For \(3(\cos 300^\circ - i \sin 30^\circ)\): 1. **Convert to standard form**: \[ z = 3(\cos 300^\circ - i \sin 30^\circ) = 3(\cos 300^\circ) - 3(i \sin 30^\circ) \] Knowing that \(\cos 300^\circ = \frac{1}{2}\) and \(\sin 30^\circ = \frac{1}{2}\): \[ z = 3 \left(\frac{1}{2}\right) - 3\left(i \cdot \frac{1}{2}\right) = \frac{3}{2} - \frac{3}{2}i \] 2. **Find the modulus**: \[ |z| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{3}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{9}{4}} = \sqrt{\frac{18}{4}} = \frac{3\sqrt{2}}{2} \] 3. **Find the argument**: \[ \tan \theta = \frac{-\frac{3}{2}}{\frac{3}{2}} = -1 \] This corresponds to an angle in the fourth quadrant: \[ \theta = 315^\circ \] **Final answer for (iv)**: Modulus = \(\frac{3\sqrt{2}}{2}\), Argument = \(315^\circ\) --- ### Summary of Answers: 1. (i) Modulus = 2, Argument = \(150^\circ\) 2. (ii) Modulus = 2, Argument = \(240^\circ\) 3. (iii) Modulus = 13, Argument = \(\tan^{-1}\left(\frac{12}{5}\right)\) 4. (iv) Modulus = \(\frac{3\sqrt{2}}{2}\), Argument = \(315^\circ\) ---

Let's solve the question step by step. ### Question: Find the modulus and argument of the following: (i) \(-\sqrt{3} + i\) (ii) \(-1 - i\sqrt{3}\) (iii) \(5 + 12i\) (iv) \(3(\cos 300^\circ - i \sin 30^\circ)\) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of -4i.

Find the argument of the following: (1+i)/(-sqrt(3)i)

Find the modulus and argument of the following complex number (1+2i)/(1-3i)

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of the following complex number: 1/(1+i)

Find the modulus and argument of each of the following complex number: -sqrt(3)-i

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus of the following : (1-isqrt(3))/(2+2i)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .