Home
Class 11
MATHS
Convert the complex number (-16)/(1+isqr...

Convert the complex number `(-16)/(1+isqrt(3))`into polar form.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \(\frac{-16}{1 + i\sqrt{3}}\) into polar form, we will follow these steps: ### Step 1: Rationalize the denominator We start by multiplying the numerator and the denominator by the conjugate of the denominator: \[ \frac{-16}{1 + i\sqrt{3}} \cdot \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = \frac{-16(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ### Step 2: Simplify the denominator Now, we simplify the denominator using the difference of squares formula: \[ (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 3: Simplify the numerator Next, we simplify the numerator: \[ -16(1 - i\sqrt{3}) = -16 + 16i\sqrt{3} \] ### Step 4: Combine the results Now we can write the expression as: \[ \frac{-16 + 16i\sqrt{3}}{4} = -4 + 4i\sqrt{3} \] ### Step 5: Write in standard form Now we have the complex number in standard form: \[ -4 + 4i\sqrt{3} \] ### Step 6: Find the modulus To convert to polar form, we need to find the modulus \(r\): \[ r = \sqrt{(-4)^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \] ### Step 7: Find the argument Next, we find the argument \(\theta\): \[ \tan(\theta) = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{4\sqrt{3}}{-4} = -\sqrt{3} \] This corresponds to an angle in the second quadrant. The reference angle where \(\tan(\theta) = \sqrt{3}\) is \(\frac{\pi}{3}\). Thus, the angle in the second quadrant is: \[ \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] ### Step 8: Write in polar form Finally, we can express the complex number in polar form: \[ 8 \left( \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) \right) \] ### Final Answer The polar form of the complex number \(\frac{-16}{1 + i\sqrt{3}}\) is: \[ 8 \text{cis} \left(\frac{2\pi}{3}\right) \] where \(\text{cis}(\theta) = \cos(\theta) + i\sin(\theta)\). ---

To convert the complex number \(\frac{-16}{1 + i\sqrt{3}}\) into polar form, we will follow these steps: ### Step 1: Rationalize the denominator We start by multiplying the numerator and the denominator by the conjugate of the denominator: \[ \frac{-16}{1 + i\sqrt{3}} \cdot \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = \frac{-16(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number (1+isqrt(3)) into polar form.

Convert the complex number 4/(1-isqrt3) in the polar form.

Represent the complex number z = 1 +isqrt(3) in the polar form.

Convert the complex number (1+i)/(1-i) in the polar form

Write the complex number: sqrt(-16)

Represent the complex numbers z= 1 + sqrt3i into polar form

Represent the complex numbers (1+7i)/((2-i)^(2)) in polar form

Write 1+isqrt(3)\ in polar form.

Convert the complex number z=(i-1)/(cospi/3+isinpi/3) in the polar form.

Convert the complex number z=(i-1)/(cospi/3+isinpi/3) in the polar form.