Home
Class 11
MATHS
If z=x+ iy such that the argument of (...

If `z=x+ iy` such that the argument of `(z-1)/(z+1)` is always `pi/4`. Prove that `x^2 + y^2-2y=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition that the argument of \((z - 1)/(z + 1)\) is always \(\pi/4\). Let's denote \(z = x + iy\), where \(x\) and \(y\) are real numbers. ### Step-by-step Solution: 1. **Substituting \(z\)**: \[ \text{We have } z = x + iy. \] Therefore, \[ z - 1 = (x - 1) + iy \quad \text{and} \quad z + 1 = (x + 1) + iy. \] 2. **Forming the fraction**: \[ \frac{z - 1}{z + 1} = \frac{(x - 1) + iy}{(x + 1) + iy}. \] 3. **Rationalizing the denominator**: To simplify, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{((x - 1) + iy)((x + 1) - iy)}{((x + 1) + iy)((x + 1) - iy)}. \] The denominator simplifies to: \[ (x + 1)^2 + y^2. \] The numerator expands to: \[ (x - 1)(x + 1) - i y (x - 1) + i y (x + 1) + y^2 = x^2 - 1 + y^2 + i(2y). \] 4. **Combining results**: Thus, \[ \frac{z - 1}{z + 1} = \frac{x^2 + y^2 - 1 + 2iy}{(x + 1)^2 + y^2}. \] 5. **Finding the argument**: The argument of a complex number \(a + bi\) is given by \(\tan^{-1}(\frac{b}{a})\). Therefore, \[ \text{arg}\left(\frac{z - 1}{z + 1}\right) = \tan^{-1}\left(\frac{2y}{x^2 + y^2 - 1}\right). \] Given that this argument is \(\frac{\pi}{4}\), we have: \[ \tan\left(\frac{\pi}{4}\right) = 1. \] Hence, \[ \frac{2y}{x^2 + y^2 - 1} = 1. \] 6. **Cross-multiplying**: \[ 2y = x^2 + y^2 - 1. \] 7. **Rearranging the equation**: \[ x^2 + y^2 - 2y - 1 = 0 \implies x^2 + y^2 - 2y = 1. \] Thus, we have proved that: \[ x^2 + y^2 - 2y = 1. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

A variable complex number z=x+iy is such that arg (z-1)/(z+1)= pi/2 . Show that x^2+y^2-1=0 .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If complex number z=x +iy satisfies the equation Re (z+1) = |z-1| , then prove that z lies on y^(2) = 4x .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If z_1=x_1+iy_1,z_2=x_2+iy_2 and z_1 = (i(z_2+1))/(z_2-1) , prove that x_1^2+y_1^2-x_1= (x_2^2+y_2^2+2x_2-2y_2+1)/((x_2-1)^2+y_2^2)

If z=x+iy prove that |\x|+|\y|lesqrt(2)|\z|