Home
Class 11
MATHS
If (3+2isintheta)/(1- 2isintheta) is re...

If `(3+2isintheta)/(1- 2isintheta) ` is real , then general value of `theta` is :

A

` (npi)/(2),nin1`

B

` npi,nin1`

C

`(npi)/(3),nin1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the general value of \(\theta\) such that the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\) is real. ### Step-by-Step Solution: 1. **Set up the expression**: We have the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\). 2. **Rationalize the denominator**: To eliminate the imaginary part from the denominator, multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(3 + 2i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)} \] 3. **Calculate the denominator**: The denominator simplifies as follows: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 - 4(-\sin^2 \theta) = 1 + 4 \sin^2 \theta \] 4. **Calculate the numerator**: The numerator expands to: \[ (3 + 2i \sin \theta)(1 + 2i \sin \theta) = 3 + 6i \sin \theta + 2i \sin \theta - 4 \sin^2 \theta = 3 - 4 \sin^2 \theta + 8i \sin \theta \] 5. **Combine the results**: Now we can write the entire expression as: \[ \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \] 6. **Separate real and imaginary parts**: The expression can be separated into real and imaginary parts: - Real part: \(\frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta}\) - Imaginary part: \(\frac{8 \sin \theta}{1 + 4 \sin^2 \theta}\) 7. **Set the imaginary part to zero**: For the expression to be real, the imaginary part must equal zero: \[ \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} = 0 \] This implies that: \[ 8 \sin \theta = 0 \] 8. **Solve for \(\theta\)**: From \(8 \sin \theta = 0\), we find: \[ \sin \theta = 0 \] The general solution for \(\sin \theta = 0\) is: \[ \theta = n\pi \quad \text{where } n \text{ is an integer} \] ### Final Answer: The general value of \(\theta\) is: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5F|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If tan3theta=cottheta , then general value of theta is :

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

If 4sin^(2)theta=3, then general value of theta is:

If sqrt(3)costheta+sintheta=2 , then general value of theta is:

If sectheta-1=(sqrt(2)-1)tantheta , then general value of theta is:

If sintheta,1,cos2theta are in G.P., then find the general values of theta

Find the general value of theta 2 sin theta - 1 =0

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot

If (costheta +isintheta)(cos2theta +isin2theta).....(cosntheta + isinntheta) = 1 then the value of theta is:

Find the general value of theta 4 sin ^(2) theta =1