Home
Class 11
MATHS
If x+ iy=(1+ 4i)(1+5i), then (x^(2)+y^(2...

If `x+ iy=(1+ 4i)(1+5i)`, then `(x^(2)+y^(2))` is equal to :

A

17

B

26

C

442

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( x^2 + y^2 \) given that \( x + iy = (1 + 4i)(1 + 5i) \). ### Step-by-Step Solution: 1. **Multiply the Complex Numbers**: \[ (1 + 4i)(1 + 5i) \] We will use the distributive property (FOIL method): \[ = 1 \cdot 1 + 1 \cdot 5i + 4i \cdot 1 + 4i \cdot 5i \] \[ = 1 + 5i + 4i + 20i^2 \] 2. **Simplify the Expression**: Recall that \( i^2 = -1 \): \[ 20i^2 = 20(-1) = -20 \] Now substituting this back: \[ = 1 + 5i + 4i - 20 \] Combine like terms: \[ = (1 - 20) + (5i + 4i) = -19 + 9i \] 3. **Identify \( x \) and \( y \)**: From the equation \( x + iy = -19 + 9i \), we can see that: \[ x = -19 \quad \text{and} \quad y = 9 \] 4. **Calculate \( x^2 + y^2 \)**: Now we need to find \( x^2 + y^2 \): \[ x^2 + y^2 = (-19)^2 + 9^2 \] Calculate each square: \[ = 361 + 81 \] \[ = 442 \] ### Final Answer: Thus, \( x^2 + y^2 = 442 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5F|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5D|6 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If ((a^2+1)^2)/(2a-i)=x+i y , then x^2+y^2 is equal to a. ((a^2+1)^4)/(4a^2+1) b. ((a+1)^2)/(4a^2+1) c. ((a^2-1)^2)/((4a^2-1)^2) d. none of these

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If (1+2i) (2+3i)(3+4i)=x+iy,x,y in R then x^(2)+y^(2) is

If x +iy =(3+5i)/(7-6i) then y is equal to

If (x+iy)^(1//3)=a+ib,"where "i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

Match the following : {:("Column - I" , "Column - II"),("(A) The smallest positive integer for which" (1 +i)^(n)=(1-i)^(n)" is " , "(p) 1"),("(B) If " root3(a+ib) =x +iy and b/y -a/x = k (x^(2) +y^(2)) " then k is equal to " , "(p) -3 " ),("(C) If " x=(1+i)/sqrt2 ", then the value of "1 +x^(2)+x^(4)+x^(6)+x^(8)+x^(10)+....+ x^(2004)+x^(2006) +x^(2008), "(r) 2"),("(D) If the minimum value of " |z+1+i|+|z-1-i|+|2-z|+|3-z| " is k then (k-8) equals " ,"(s)4 "):}

(2/(1-i) + 3/(1+i))((2+3i)/(4+5i)) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to