Home
Class 11
MATHS
If |z1|=|z2|=|z3|=......=|zn|=1, then ...

If `|z_1|=|z_2|=|z_3|=......=|z_n|=1`, then `|z_1+z_2+z_3+......+z_n|=`

A

`n`

B

`|(1)/(z)+(1)/(z_(2))+...+(1)/(z_(n))|`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the modulus of the sum of complex numbers \( z_1, z_2, z_3, \ldots, z_n \) given that each of them has a modulus of 1, i.e., \( |z_1| = |z_2| = |z_3| = \ldots = |z_n| = 1 \). ### Step-by-step Solution: 1. **Understanding the Modulus Condition**: Since \( |z_k| = 1 \) for each \( k \), we can express each complex number \( z_k \) in the form: \[ z_k = e^{i\theta_k} \] where \( \theta_k \) is the argument of \( z_k \). 2. **Expressing the Sum**: We need to find the modulus of the sum: \[ |z_1 + z_2 + z_3 + \ldots + z_n| \] 3. **Using Properties of Conjugates**: The conjugate of the sum can be expressed as: \[ \overline{z_1 + z_2 + z_3 + \ldots + z_n} = \overline{z_1} + \overline{z_2} + \overline{z_3} + \ldots + \overline{z_n} \] Since \( |z_k| = 1 \), we have \( \overline{z_k} = \frac{1}{z_k} \). Thus, we can write: \[ \overline{z_1 + z_2 + z_3 + \ldots + z_n} = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \ldots + \frac{1}{z_n} \] 4. **Finding the Modulus**: Now, we can use the property of modulus: \[ |z_1 + z_2 + z_3 + \ldots + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \ldots + \frac{1}{z_n} \right| \] Since \( |z_k| = 1 \), we know that \( \left| \frac{1}{z_k} \right| = 1 \). 5. **Conclusion**: Therefore, the modulus of the sum of the complex numbers can be expressed as: \[ |z_1 + z_2 + z_3 + \ldots + z_n| = |z_1| + |z_2| + |z_3| + \ldots + |z_n| = n \] However, this is only true if all \( z_k \) are aligned in the same direction (i.e., they are all equal). In general, the modulus can vary depending on the angles \( \theta_k \). Thus, the final answer is: \[ |z_1 + z_2 + z_3 + \ldots + z_n| \leq n \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then z_1, z_2, z_3, z_4 are

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then prove that z_1, z_2, z_3, z_4 are concyclic.

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If |z_1|=|z_2|=dot=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)dot

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these