Home
Class 11
MATHS
Find the modulus and the arguments of...

Find the modulus and the arguments of the complex number `z=-sqrt()+i`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `-sqrt(3)+i=r(costheta+isintheta)`
` rArr" "rcostheta=-sqrt(3)`
and `" "rsintheta=1`
`" "thereforer^(2)cos^(2)theta+r^(2)sin ^(2)theta=3+1`
`" "rArr" "r^(2)=4 " "rArr" "r=2`
and ` " "(rsintheta)/( rcostheta)=(1)/(-sqrt(3))`
`" "tantheta=-(1)/(sqrt(3))=-tan30^(@)`
`" "tan and cos ` are negative in second quadrant.
`rArr" "tan theta=tan(180^(@)-30^(@))`
`" "theta=150^(@)`
`therefore` Modulus =2, Argument = `150^(@)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.1|14 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and the arguments of the complex number z = - 1 - isqrt(3)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

Find the modulus and argument of -3.

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus and argument of -4i.

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

The argument of the complex number (1 +i)^(4) is

Find the modulus and argument of the following complex number: 1/(1+i)

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.