Home
Class 11
MATHS
write polar form of this complex number ...

write polar form of this complex number
`1-i`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \(1 - i\) into its polar form, we will follow these steps: ### Step 1: Identify the complex number The complex number given is \( z = 1 - i \). ### Step 2: Calculate the modulus \( r \) The modulus \( r \) of a complex number \( z = a + bi \) is given by the formula: \[ r = \sqrt{a^2 + b^2} \] For our complex number: - \( a = 1 \) - \( b = -1 \) Now, substituting the values: \[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 3: Calculate the argument \( \theta \) The argument \( \theta \) is found using the formula: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] Substituting the values: \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \] The value of \( \tan^{-1}(-1) \) is \( -\frac{\pi}{4} \). Since the complex number \( 1 - i \) lies in the fourth quadrant (where the real part is positive and the imaginary part is negative), we confirm that: \[ \theta = -\frac{\pi}{4} \] ### Step 4: Write the polar form The polar form of a complex number is given by: \[ z = r(\cos \theta + i \sin \theta) \] Substituting the values of \( r \) and \( \theta \): \[ z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] ### Step 5: Simplify using trigonometric identities Using the identities: - \( \cos(-\theta) = \cos(\theta) \) - \( \sin(-\theta) = -\sin(\theta) \) We have: \[ \cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] \[ \sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \] Thus, substituting these values back: \[ z = \sqrt{2} \left( \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) \] ### Final Polar Form This simplifies to: \[ z = 1 - i = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] ### Conclusion The polar form of the complex number \( 1 - i \) is: \[ z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \]

To convert the complex number \(1 - i\) into its polar form, we will follow these steps: ### Step 1: Identify the complex number The complex number given is \( z = 1 - i \). ### Step 2: Calculate the modulus \( r \) The modulus \( r \) of a complex number \( z = a + bi \) is given by the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5.1|14 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

The polar form of the complex number (i^(25))^(3) is

Express in the form of complex number (1-i)^4

Express in the form of complex number if z=i^(-39)

Express in the form of complex number z= (5-3i)(2+i)

Write 1-i in polar form.

Write down the following complex number in polar form: Quotient of 12 (cos 150^0 + i sin 150^0) and 3(cos 60^0+i sin 60^0)

Write the real and imaginary parts of the complex number: - (1/5+i)/i

Find the polar form of conjugate of (1-i).

Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i , in the Argand plane, is

Express in the form of complex number i^9+i^(19)