Home
Class 11
MATHS
Evaluate (n !)/((n-r)!),when (i) n = 6, ...

Evaluate `(n !)/((n-r)!),`when (i) `n = 6, r = 2` (ii) `n = 9, r = 5`

Text Solution

Verified by Experts

(i) `:' n = 6` and `r = 2`
`(lfloorn)/(ul(n-r)) = (lfloor6)/(ul(6-2)) = (lfloor6)/(lfloor4) = (6 xx 5 xx lfloor4)/(lfloor4) = 6 xx 5 = 30`
Therefore, `(lfloorn)/(ul(n-r)) = 30`
(ii) `:' n = 9` and `r = 5`
`(lfloorn)/(ul(n-r)) (lfloor9)/(ul(9-5)) = (lfloor9)/(lfloor4)`
`= (9 xx 8 xx 7 xx 6 xx 5 xx 4 xx 3 xx 2 xx 1)/(4 xx 3 xx 2 xx 1)`
`= 89 xx 8 xx 7 xx 6 xx 5 = 15120`.
Therefore, `(lfloorn)/(ul(n-r)) = 15120`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3|11 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4|9 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1|6 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate (n !)/(r !(n-r)!) , when n = 5, r = 2.

Evaluate : (n!)/((n-r)!) where n=5,r=2

Evaluate (n!)/(r!(n-r)!) , where n=15,r=4

Let R be a relation in N defined by R={(a , b); a , b in N\ a n d\ a=b^2dot} Are the following true: (i)\ (a , a) in R\ AA\ a in N (ii)\ (a , b) in R=>(b , a) in R (iii)\ (a , b) in R ,(b , c) in R=>(a , c) in R

Let R be a relation from N to N defined by R = {(a , b) : adot b in N and a=b^2 ). Are the following true?(i) (a , a) in R , for a l l a in N (ii) (a , b) in R , i m p l i e s (b , a) in R (iii) (a ,

If n = 12, r = 4 , then evaluate the following: (i) (n!)/(r!(n-r)!) (ii) (n!)/((n-r+2)!)

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If C ( 2n,r) = C(2n,r+2) , find r in term of n.

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)