Home
Class 11
MATHS
If x= sqrt5+sqrt3 and y = sqrt5-sqrt3, t...

If `x= sqrt5+sqrt3` and `y = sqrt5-sqrt3`, then `x^4 -y^4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \sqrt{5} + \sqrt{3} \) and \( y = \sqrt{5} - \sqrt{3} \), we need to find \( x^4 - y^4 \). We can use the difference of squares and some algebraic identities to simplify the calculations. ### Step-by-Step Solution: 1. **Express \( x^4 - y^4 \) using the difference of squares:** \[ x^4 - y^4 = (x^2 - y^2)(x^2 + y^2) \] **Hint:** Recall that \( a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) \). 2. **Calculate \( x^2 - y^2 \):** \[ x^2 - y^2 = (x - y)(x + y) \] **Hint:** Use the identity \( a^2 - b^2 = (a - b)(a + b) \). 3. **Find \( x - y \) and \( x + y \):** - \( x - y = (\sqrt{5} + \sqrt{3}) - (\sqrt{5} - \sqrt{3}) = 2\sqrt{3} \) - \( x + y = (\sqrt{5} + \sqrt{3}) + (\sqrt{5} - \sqrt{3}) = 2\sqrt{5} \) **Hint:** Simplify the expressions by combining like terms. 4. **Now substitute back into \( x^2 - y^2 \):** \[ x^2 - y^2 = (2\sqrt{3})(2\sqrt{5}) = 4\sqrt{15} \] **Hint:** Multiply the results from step 3. 5. **Next, calculate \( x^2 + y^2 \):** \[ x^2 + y^2 = (x + y)^2 - 2xy \] First, find \( xy \): \[ xy = (\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = 5 - 3 = 2 \] **Hint:** Use the difference of squares to find \( xy \). 6. **Now calculate \( (x + y)^2 \):** \[ (x + y)^2 = (2\sqrt{5})^2 = 4 \cdot 5 = 20 \] **Hint:** Square the sum you found in step 3. 7. **Substituting into \( x^2 + y^2 \):** \[ x^2 + y^2 = 20 - 2 \cdot 2 = 20 - 4 = 16 \] **Hint:** Perform the subtraction carefully. 8. **Now substitute \( x^2 - y^2 \) and \( x^2 + y^2 \) back into the expression for \( x^4 - y^4 \):** \[ x^4 - y^4 = (4\sqrt{15})(16) = 64\sqrt{15} \] **Hint:** Multiply the results from steps 4 and 7. ### Final Answer: \[ x^4 - y^4 = 64\sqrt{15} \]

To solve the problem where \( x = \sqrt{5} + \sqrt{3} \) and \( y = \sqrt{5} - \sqrt{3} \), we need to find \( x^4 - y^4 \). We can use the difference of squares and some algebraic identities to simplify the calculations. ### Step-by-Step Solution: 1. **Express \( x^4 - y^4 \) using the difference of squares:** \[ x^4 - y^4 = (x^2 - y^2)(x^2 + y^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8C|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

Find x if (x^(sqrt5+sqrt3))^(sqrt5-sqrt3) =9

Let x=sqrt(3-sqrt5) and y=sqrt(3+sqrt5) If the value of the expression x-y+2x^2y+2xy^2-x^4y+xy^4 can be expressed in the form sqrtp+sqrtq where p. q in N, then find the value of (p+q).

If x=(sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3)) and y=(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3)) , then x+y+x y= (a) 9 (b) 5 (c) 17 (d) 7

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)+ y^(2)+xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)

If 9^(x) = sqrt3 and 2^(x+y) = 32 , then y =

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Exercise 8A
  1. Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6...

    Text Solution

    |

  2. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  3. If x= sqrt5+sqrt3 and y = sqrt5-sqrt3, then x^4 -y^4

    Text Solution

    |

  4. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  5. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  6. Prove that Sigma(r=0)^(n) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  7. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  8. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  9. If (1+x+x^(2))^(n)=1 +a(1)x+a(2)x^(2)+a(3)x^(3) +……..+a(2n).x^(2...

    Text Solution

    |

  10. Using binomial theorem, prove that 2^(3n)-7n-1 is divisible by 49 , wh...

    Text Solution

    |

  11. Expand using binomial theorem: (i) (1-2x)^(4)

    Text Solution

    |

  12. Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6...

    Text Solution

    |

  13. Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the...

    Text Solution

    |

  14. Expand (x+y)^(4)-(x-y)^(4). Hence find the value of (3+sqrt(5))^(4) -(...

    Text Solution

    |

  15. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  16. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  17. Prove that Sigma(r=1) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  18. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  19. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  20. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |