Home
Class 11
MATHS
By using binomial theorem find which num...

By using binomial theorem find which number is greater `(1.2)^(3000) " or " 600`?

Text Solution

AI Generated Solution

The correct Answer is:
To determine which number is greater, \( (1.2)^{3000} \) or \( 600 \), we can use the Binomial Theorem. Here’s a step-by-step solution: ### Step 1: Rewrite \( (1.2)^{3000} \) We can express \( 1.2 \) as \( 1 + 0.2 \). Therefore, we rewrite the expression: \[ (1.2)^{3000} = (1 + 0.2)^{3000} \] ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, we can expand \( (a + b)^n \) as follows: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \( a = 1 \), \( b = 0.2 \), and \( n = 3000 \). Thus, we have: \[ (1 + 0.2)^{3000} = \sum_{k=0}^{3000} \binom{3000}{k} (1)^{3000-k} (0.2)^k \] This simplifies to: \[ (1 + 0.2)^{3000} = \binom{3000}{0} (1)^{3000} (0.2)^0 + \binom{3000}{1} (1)^{2999} (0.2)^1 + \binom{3000}{2} (1)^{2998} (0.2)^2 + \ldots \] ### Step 3: Calculate the first few terms Calculating the first few terms: 1. For \( k = 0 \): \[ \binom{3000}{0} (1)^{3000} (0.2)^0 = 1 \] 2. For \( k = 1 \): \[ \binom{3000}{1} (1)^{2999} (0.2)^1 = 3000 \times 0.2 = 600 \] 3. For \( k = 2 \): \[ \binom{3000}{2} (1)^{2998} (0.2)^2 = \frac{3000 \times 2999}{2} \times 0.04 \] This term is positive and contributes to the sum. ### Step 4: Sum of the terms The sum of the first two terms is: \[ 1 + 600 = 601 \] Since the subsequent terms (for \( k \geq 2 \)) are all positive, we can conclude: \[ (1.2)^{3000} = 1 + 600 + \text{(positive terms)} > 601 \] ### Step 5: Compare with 600 Since \( 601 > 600 \) and the additional positive terms only increase the total, we have: \[ (1.2)^{3000} > 600 \] ### Conclusion Thus, we conclude that: \[ (1.2)^{3000} \text{ is greater than } 600 \]

To determine which number is greater, \( (1.2)^{3000} \) or \( 600 \), we can use the Binomial Theorem. Here’s a step-by-step solution: ### Step 1: Rewrite \( (1.2)^{3000} \) We can express \( 1.2 \) as \( 1 + 0.2 \). Therefore, we rewrite the expression: \[ (1.2)^{3000} = (1 + 0.2)^{3000} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8C|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, indicate which number is larger (1. 1)^(10000) or 1000.

Which number is larger (1.3)^(2000) or 600

Using binomial theorem indicate which is larger (1. 1)^(10000)or\ 1000 ?

Using binomial theorem, indicate which is larger (1. 1)^(10000)or1000 ?

Using binomial theorem compute : (99)^5

By using binomial theorem, expand: (1+x+x^2)^3

Using binomial theorem compute : (10. 1)^5

Using binomial theorem find (i) (101)^(5) (ii) 51^(6)

Using binomial theorem compute : (102)^6

Using binomial theorem, evaluate : (96)^3

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Exercise 8A
  1. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  2. If x= sqrt5+sqrt3 and y = sqrt5-sqrt3, then x^4 -y^4

    Text Solution

    |

  3. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  4. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  5. Prove that Sigma(r=0)^(n) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  6. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  7. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  8. If (1+x+x^(2))^(n)=1 +a(1)x+a(2)x^(2)+a(3)x^(3) +……..+a(2n).x^(2...

    Text Solution

    |

  9. Using binomial theorem, prove that 2^(3n)-7n-1 is divisible by 49 , wh...

    Text Solution

    |

  10. Expand using binomial theorem: (i) (1-2x)^(4)

    Text Solution

    |

  11. Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6...

    Text Solution

    |

  12. Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the...

    Text Solution

    |

  13. Expand (x+y)^(4)-(x-y)^(4). Hence find the value of (3+sqrt(5))^(4) -(...

    Text Solution

    |

  14. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  15. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  16. Prove that Sigma(r=1) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  17. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  18. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  19. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |

  20. By using binomial theorem prove that (2^(3n)-7n-1) is divisible by ...

    Text Solution

    |