Home
Class 11
MATHS
Expand of the expression : (2x-3)^6...

Expand of the expression : `(2x-3)^6`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(2x-3)^(6)=^(6)C_(0)(2x)^(6)(-3)^(0)+^(6)C_(1)(2x)^(5)(-3)^(1)`
`+^(6)C_(2)(2x)^(4)(-3)^(2)+^(6)C_(3)(2x)^(3)(-3)^(3)`
`+^(6)C_(4)(2x)^(2)(-3)^(4)+^(6)C_(5)(2x)^(1)(-3)^(5)`
`+^(6)C_(6)(2x)^(0)(-3)^(6)`
`=(1xx64x^(6))+{6xx32x^(5)xx-3}+{15xx16x^(4)xx9}`
`+{20xx8x^(3)xx(27)}+{15xx4x^(2)xx81}`
`+{6xx2x xx(-243)}+{1xx729}`
`=64x^(6)-576x^(5)+2160x^(4)-4320x^(3)+4860x^(2)`
`-2916x+729`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Expand of the expression : (1-2x)^5

Expand of the expression : (x+1/x)^6

Expand of the expression : (2/x-x/2)^5

Expand of the expression : (x/3+1/x)^5

Graph the expression x^(2)+x-6 .

If 'x' is real, then greatest value of the expression, (x+2)/(2x^(2)+3x +6) is :

(3a+9)/(a-3)^2+ (-9)/(3a-9) In the expression above, (a-3)^(2) =6. What is the value of the expression ?

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is

Use the remainder theorem to factorise the expression 2x^(3) + x^(2) + 7x-6 . Hence, solve the equation 2x^(3) + 9x^(2) + 7x-6=0