Home
Class 11
MATHS
"Evaluate Sigma(n=1)^(11) (2+3^(n))...

`"Evaluate Sigma_(n=1)^(11) (2+3^(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( \Sigma_{n=1}^{11} (2 + 3^n) \), we can break it down into two separate summations. ### Step-by-Step Solution: 1. **Separate the Summation**: \[ \Sigma_{n=1}^{11} (2 + 3^n) = \Sigma_{n=1}^{11} 2 + \Sigma_{n=1}^{11} 3^n \] 2. **Calculate the First Summation**: The first summation is a constant: \[ \Sigma_{n=1}^{11} 2 = 2 \times 11 = 22 \] 3. **Calculate the Second Summation**: The second summation is a geometric series: \[ \Sigma_{n=1}^{11} 3^n \] The formula for the sum of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{r^n - 1}{r - 1} \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Here, \( a = 3 \), \( r = 3 \), and \( n = 11 \). Plugging in the values: \[ S_{11} = 3 \frac{3^{11} - 1}{3 - 1} = 3 \frac{3^{11} - 1}{2} \] 4. **Calculate \( 3^{11} \)**: First, we need to calculate \( 3^{11} \): \[ 3^{11} = 177147 \] Therefore, \[ S_{11} = 3 \frac{177147 - 1}{2} = 3 \frac{177146}{2} = 3 \times 88573 = 265719 \] 5. **Combine the Results**: Now, we combine both parts of the summation: \[ \Sigma_{n=1}^{11} (2 + 3^n) = 22 + 265719 = 265741 \] ### Final Answer: \[ \Sigma_{n=1}^{11} (2 + 3^n) = 265741 \]

To evaluate the sum \( \Sigma_{n=1}^{11} (2 + 3^n) \), we can break it down into two separate summations. ### Step-by-Step Solution: 1. **Separate the Summation**: \[ \Sigma_{n=1}^{11} (2 + 3^n) = \Sigma_{n=1}^{11} 2 + \Sigma_{n=1}^{11} 3^n \] ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9H|9 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9I|9 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9F|23 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|12 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISC Exercise|16 Videos

Similar Questions

Explore conceptually related problems

"Evaluate "Sigma_(k=1)^(11) (2+3^(k))

"Evaluate "Sigma_(n=1)^(6) (3+2^(n)).

The value of Sigma_(n=1)^(3) tan^(-1)((1)/(n)) is

The vlaue of the Sigma_(n=0)^(oo) (2n+3)/(3^n) is equal to ______.

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

the value of Sigma_(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C_(r-2),,""^(n-2)C_(r-1),,""^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Evaluate the following: sum_(n=1)^(11)(2+3^n)