Home
Class 11
MATHS
If x=1+a+a^(2)+...oo, a lt 1 and y=1+b+b...

If `x=1+a+a^(2)+...oo, a lt 1` and `y=1+b+b^(2)+...oo, b lt 1,` then `1+ab+a^(2)b^(2)+...oo :`

A

`(x+y+xy)/(x+y-1)`

B

`(x+y)/(x+y-1)`

C

`(xy)/(x+y-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series \(1 + ab + a^2b^2 + \ldots\) given the definitions of \(x\) and \(y\). ### Step-by-step Solution: 1. **Understanding the Series**: The series \(1 + ab + a^2b^2 + \ldots\) is a geometric series where the first term \(a_1 = 1\) and the common ratio \(r = ab\). 2. **Sum of an Infinite Geometric Series**: The formula for the sum \(S\) of an infinite geometric series is given by: \[ S = \frac{a_1}{1 - r} \] where \(a_1\) is the first term and \(r\) is the common ratio. Here, \(a_1 = 1\) and \(r = ab\). 3. **Applying the Formula**: Using the formula, we find: \[ S = \frac{1}{1 - ab} \] 4. **Finding \(ab\)**: We need to express \(ab\) in terms of \(x\) and \(y\). From the definitions of \(x\) and \(y\): \[ x = \frac{1}{1 - a} \quad \text{and} \quad y = \frac{1}{1 - b} \] Rearranging these gives: \[ a = 1 - \frac{1}{x} \quad \text{and} \quad b = 1 - \frac{1}{y} \] 5. **Calculating \(ab\)**: Now, we can find \(ab\): \[ ab = \left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right) \] Expanding this: \[ ab = 1 - \frac{1}{x} - \frac{1}{y} + \frac{1}{xy} \] 6. **Substituting \(ab\) into the Sum**: Now we substitute \(ab\) back into the sum formula: \[ S = \frac{1}{1 - \left(1 - \frac{1}{x} - \frac{1}{y} + \frac{1}{xy}\right)} \] Simplifying the denominator: \[ S = \frac{1}{\frac{1}{x} + \frac{1}{y} - \frac{1}{xy}} \] Taking the common denominator: \[ S = \frac{xy}{y + x - 1} \] 7. **Final Result**: Thus, the sum of the series \(1 + ab + a^2b^2 + \ldots\) is: \[ S = \frac{xy}{x + y - 1} \]

To solve the problem, we need to find the sum of the series \(1 + ab + a^2b^2 + \ldots\) given the definitions of \(x\) and \(y\). ### Step-by-step Solution: 1. **Understanding the Series**: The series \(1 + ab + a^2b^2 + \ldots\) is a geometric series where the first term \(a_1 = 1\) and the common ratio \(r = ab\). 2. **Sum of an Infinite Geometric Series**: ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9.1|14 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9.2|18 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9L|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|12 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISC Exercise|16 Videos

Similar Questions

Explore conceptually related problems

If A=1+r^a+r^(2a)+...oo=a and B=1+r^b+r^(2b)+...oo=b then a/b is equal to

If x=1+a+a^(2)+…….oo,y=1+b+b^(2)…….oo then 1+ab+a^(2)b^(2)+……….oo,|a|lt1,|b|lt1 is

If x=1+a+a^2+oo,w h e r e|a|<1a n dy=1+b+b^2+oo,w h e r e|b|<1. prove that: 1+a b+a^2b^2+oo=(x y)/(x+y-1)

Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to "oo,y=1+b+b^(2)+ . . . ."to "ooand,z=1+c+c^(2)+ . . . "to "oo , then x,y,z are in

If |alpha|lt1,|beta|lt1 1-alpha+alpha^(2)-alpha^(3)+ . . . . ."to "oo=s_(1) 1-beta+beta^(2)-beta^(3)+ . . . ."to "oo=s_(2) , then 1-alphabeta+alpha^(2)beta^(2)+ . . . . ."to "oo equals

If x = 1 + 3a + 6a^2 + 10 a^3 + ……" to " oo terms |a| lt 1, y = 1+4a+10a^2 + 20a^3 + ….." to " oo terms, |a| lt 1 , then x:y

"If "y=x+x^(2)+x^(3)+...oo and |x|lt1, "then prove that "x=(y)/(1+y).

If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)+a^3(a^3+b^3)+.....oo is

If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)+a^3(a^3+b^3)+.....oo is

L e tf(x)={x+2 , x <-1 ; x^2 , -1 lt= x < 1 and (x-2)^2 , x geq 1 Then number of times f^(prime)(x) changes its sign in (-oo,oo) is___