Home
Class 11
MATHS
If x ∈ R and the numbers (5 ^ (1−x) +5^ ...

If x ∈ R and the numbers `(5 ^ (1−x) +5^ (x+1) , a/2, (25^ x +25^ −x ))` form an A. P. then a must lie in the interval ............ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the interval in which \( a \) lies, given that the numbers \( (5^{(1-x)} + 5^{(x+1)}, \frac{a}{2}, (25^x + 25^{-x})) \) form an arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Condition**: For three numbers \( A, B, C \) to be in A.P., the condition is: \[ 2B = A + C \] Here, let: \[ A = 5^{(1-x)} + 5^{(x+1)}, \quad B = \frac{a}{2}, \quad C = 25^x + 25^{-x} \] 2. **Expressing \( C \) in terms of \( 5^x \)**: We know that \( 25^x = (5^2)^x = (5^x)^2 \) and \( 25^{-x} = (5^{-x})^2 \). Thus: \[ C = 25^x + 25^{-x} = (5^x)^2 + (5^{-x})^2 \] 3. **Substituting \( t = 5^x \)**: Let \( t = 5^x \). Then \( 5^{-x} = \frac{1}{t} \). Now, we can rewrite \( A \) and \( C \): \[ A = 5^{(1-x)} + 5^{(x+1)} = 5 \cdot 5^{-x} + 5^x \cdot 5 = 5 \left(\frac{1}{t} + t\right) \] \[ C = t^2 + \frac{1}{t^2} \] 4. **Setting up the equation**: Now substituting \( A \), \( B \), and \( C \) into the A.P. condition: \[ 2 \cdot \frac{a}{2} = 5 \left(\frac{1}{t} + t\right) + \left(t^2 + \frac{1}{t^2}\right) \] Simplifying gives: \[ a = 5 \left(\frac{1}{t} + t\right) + t^2 + \frac{1}{t^2} \] 5. **Simplifying the expression**: We can further simplify \( a \): \[ a = 5 \left(\frac{1}{t} + t\right) + t^2 + \frac{1}{t^2} = 5 \left(t + \frac{1}{t}\right) + \left(t^2 + \frac{1}{t^2}\right) \] 6. **Using the inequality**: We know from the AM-GM inequality that: \[ t + \frac{1}{t} \geq 2 \quad \text{and} \quad t^2 + \frac{1}{t^2} \geq 2 \] Therefore: \[ a \geq 5(2) + 2 = 10 + 2 = 12 \] 7. **Finding the interval for \( a \)**: Since \( t + \frac{1}{t} \) can take values from \( 2 \) to \( \infty \), \( a \) can take values from \( 12 \) to \( \infty \). Thus, we conclude: \[ a \in [12, \infty) \] ### Final Answer: The value of \( a \) must lie in the interval \( [12, \infty) \).

To solve the problem, we need to determine the interval in which \( a \) lies, given that the numbers \( (5^{(1-x)} + 5^{(x+1)}, \frac{a}{2}, (25^x + 25^{-x})) \) form an arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Condition**: For three numbers \( A, B, C \) to be in A.P., the condition is: \[ 2B = A + C ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9.1|14 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9.2|18 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 9L|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|12 Videos
  • SETS

    NAGEEN PRAKASHAN ENGLISH|Exercise MISC Exercise|16 Videos

Similar Questions

Explore conceptually related problems

If x in R , the numbers 2^(1+x)+2^(1-x), b//2,36^x+36^(-x) form an A.P., then b may lie in the interval [12 ,oo) b. [6,oo) c. (-oo,6] d. [6, 12]

If ln^(2)x+3lnx-4 is non negative, then x must lie in the interval :

If log_(1/3)((3x-1)/(x+2)) is less than unity, then 'x' must lie in the interval :

If x and y are integers, what is x + y ? (1) 3^x = 81 (2) 5^x = (25)/(5^y)

If (y^2-5y+3)(x ^2+x+1)<2x for all x in R , then fin the interval in which y lies.

Consider a quadratic expression f (x) =tx^(2) -(2t -1) x+ (5x -1) If f (x) can take both positive and negative values then t must lie in the interval

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

If 25 ^(x+1) = (125)/( 5^(x)) , find the value of x.

The least value of a for which 5^(1+x)+5^(1-x),a//2,25^(x)+25^(-x) are three consecutive terms of an A.P., is

If x+1/x=5, then x^2+1/(x^2)=? (a)25 (b) 10 (c) 23 (d) 27