Home
Class 11
MATHS
x + 2y le 10, x + y ge 1, x-y le 0, ...

`x + 2y le 10, x + y ge 1, x-y le 0, x ge 0, yge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of linear inequalities graphically, we will follow these steps: ### Step 1: Write the inequalities The inequalities we need to solve are: 1. \( x + 2y \leq 10 \) 2. \( x + y \geq 1 \) 3. \( x - y \leq 0 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert inequalities to equations To graph these inequalities, we first convert them into equations: 1. \( x + 2y = 10 \) 2. \( x + y = 1 \) 3. \( x - y = 0 \) (which simplifies to \( x = y \)) ### Step 3: Find intercepts for each equation - **For \( x + 2y = 10 \)**: - When \( x = 0 \): \( 2y = 10 \) → \( y = 5 \) (y-intercept) - When \( y = 0 \): \( x = 10 \) (x-intercept) Intercepts: \( (10, 0) \) and \( (0, 5) \) - **For \( x + y = 1 \)**: - When \( x = 0 \): \( y = 1 \) (y-intercept) - When \( y = 0 \): \( x = 1 \) (x-intercept) Intercepts: \( (1, 0) \) and \( (0, 1) \) - **For \( x - y = 0 \)** (or \( x = y \)): - This line passes through the origin \( (0, 0) \) and has a slope of 1. ### Step 4: Plot the lines on a graph Now, we will plot the lines based on the intercepts found: 1. Draw the line for \( x + 2y = 10 \) using points \( (10, 0) \) and \( (0, 5) \). 2. Draw the line for \( x + y = 1 \) using points \( (1, 0) \) and \( (0, 1) \). 3. Draw the line for \( x = y \) which is a diagonal line through the origin. ### Step 5: Determine the shaded regions - **For \( x + 2y \leq 10 \)**: Test the point \( (0, 0) \): - \( 0 + 2(0) \leq 10 \) → True, so shade towards the origin. - **For \( x + y \geq 1 \)**: Test the point \( (0, 0) \): - \( 0 + 0 \geq 1 \) → False, so shade away from the origin. - **For \( x - y \leq 0 \)**: Test the point \( (0, 0) \): - \( 0 - 0 \leq 0 \) → True, so shade above the line \( x = y \). ### Step 6: Identify the feasible region The feasible region is the area where all shaded regions overlap, considering the constraints \( x \geq 0 \) and \( y \geq 0 \). ### Step 7: Conclusion The common shaded area represents the solution to the system of inequalities.

To solve the given system of linear inequalities graphically, we will follow these steps: ### Step 1: Write the inequalities The inequalities we need to solve are: 1. \( x + 2y \leq 10 \) 2. \( x + y \geq 1 \) 3. \( x - y \leq 0 \) 4. \( x \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise NCERT QUESTION|51 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos

Similar Questions

Explore conceptually related problems

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge 0

x + y ge 24, 2x + y ge 32, x ge 0, y ge 0

Minimise Z = 6x + 3y, subject to the constraints 4x + y ge 80, x + 5y ge 115, 3x + 2y le 150, x ge 0, y ge 0 .

x + y ge 4, 2x - y lt 0

x + y le 6, x + y ge 4