Home
Class 11
MATHS
y - 2x le 1, x + y le 2, x ge 0...

`y - 2x le 1, x + y le 2, x ge 0, y ge 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear inequalities given by: 1. \( y - 2x \leq 1 \) 2. \( x + y \leq 2 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will use the graphical method. Here’s a step-by-step solution: ### Step 1: Convert inequalities to equations First, we will convert the inequalities into equations to find the boundary lines. 1. From \( y - 2x = 1 \): \[ y = 2x + 1 \] 2. From \( x + y = 2 \): \[ y = 2 - x \]

To solve the system of linear inequalities given by: 1. \( y - 2x \leq 1 \) 2. \( x + y \leq 2 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will use the graphical method. Here’s a step-by-step solution: ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise NCERT QUESTION|51 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos

Similar Questions

Explore conceptually related problems

3x + 2y le 12, x ge 1, y ge 2

Solve the given linear inequality and specify the bounded region. 2x + y ge 2, x - y le 1, x + 2y le 8, x ge 0, y ge 0 .

x-y le 2, x + y le 4 , x ge 0, y ge 0

x + 2y le 10, x + y ge 1, x-y le 0, x ge 0, yge 0

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0

x + y le 6, x + y ge 4

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

x + y ge 24, 2x + y ge 32, x ge 0, y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0