Home
Class 11
MATHS
Expand (x+y)^(4)-(x-y)^(4). Hence find t...

Expand `(x+y)^(4)-(x-y)^(4)`. Hence find the value of `(3+sqrt(5))^(4) -(3-sqrt(5))^(4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to expand the expression \((x+y)^{4} - (x-y)^{4}\) and then use this result to find the value of \((3+\sqrt{5})^{4} - (3-\sqrt{5})^{4}\). ### Step-by-Step Solution: **Step 1: Expand \((x+y)^{4}\)** Using the Binomial Theorem, we have: \[ (x+y)^{4} = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} y^{k} \] This gives us: \[ = \binom{4}{0} x^{4} + \binom{4}{1} x^{3}y + \binom{4}{2} x^{2}y^{2} + \binom{4}{3} xy^{3} + \binom{4}{4} y^{4} \] Calculating the binomial coefficients: \[ = 1 \cdot x^{4} + 4 \cdot x^{3}y + 6 \cdot x^{2}y^{2} + 4 \cdot xy^{3} + 1 \cdot y^{4} \] Thus: \[ (x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4} \] **Step 2: Expand \((x-y)^{4}\)** Similarly, we can expand \((x-y)^{4}\): \[ (x-y)^{4} = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} (-y)^{k} \] This gives us: \[ = \binom{4}{0} x^{4} - \binom{4}{1} x^{3}y + \binom{4}{2} x^{2}y^{2} - \binom{4}{3} xy^{3} + \binom{4}{4} y^{4} \] Calculating the binomial coefficients: \[ = 1 \cdot x^{4} - 4 \cdot x^{3}y + 6 \cdot x^{2}y^{2} - 4 \cdot xy^{3} + 1 \cdot y^{4} \] Thus: \[ (x-y)^{4} = x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4} \] **Step 3: Subtract the two expansions** Now we compute: \[ (x+y)^{4} - (x-y)^{4} = \left( x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4} \right) - \left( x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4} \right) \] Simplifying this: \[ = (x^{4} - x^{4}) + (4x^{3}y + 4x^{3}y) + (6x^{2}y^{2} - 6x^{2}y^{2}) + (4xy^{3} + 4xy^{3}) + (y^{4} - y^{4}) \] This reduces to: \[ = 8x^{3}y + 8xy^{3} \] Factoring out \(8xy\): \[ = 8xy(x^{2} + y^{2}) \] **Step 4: Substitute \(x = 3\) and \(y = \sqrt{5}\)** Now we need to find: \[ (3+\sqrt{5})^{4} - (3-\sqrt{5})^{4} \] Using our previous result: \[ = 8xy(x^{2} + y^{2}) \] Substituting \(x = 3\) and \(y = \sqrt{5}\): \[ = 8 \cdot 3 \cdot \sqrt{5} \left(3^{2} + (\sqrt{5})^{2}\right) \] Calculating \(3^{2} + (\sqrt{5})^{2}\): \[ = 9 + 5 = 14 \] Thus: \[ = 8 \cdot 3 \cdot \sqrt{5} \cdot 14 \] Calculating: \[ = 336\sqrt{5} \] ### Final Answer: \[ (3+\sqrt{5})^{4} - (3-\sqrt{5})^{4} = 336\sqrt{5} \]

To solve the problem, we need to expand the expression \((x+y)^{4} - (x-y)^{4}\) and then use this result to find the value of \((3+\sqrt{5})^{4} - (3-\sqrt{5})^{4}\). ### Step-by-Step Solution: **Step 1: Expand \((x+y)^{4}\)** Using the Binomial Theorem, we have: \[ (x+y)^{4} = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} y^{k} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8C|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand [ ( x+y)^(5) + (x-y)^(5) ] and hence find the value of [ ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) ] .

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the value of {(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot

Find (a+b)^4-(a-b)^4 . Hence, evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4 .

Find (1+x)^(4) + (1-x)^(4) . Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(4)

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Expand : (i) (3x - 4y +5z)^2

If x=2 and y=5 find the values of : 3x-4y

Find the value of x^4+9x^3+35 x^2-x+4 for x=-5+2sqrt(-4).

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Exercise 8A
  1. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  2. If x= sqrt5+sqrt3 and y = sqrt5-sqrt3, then x^4 -y^4

    Text Solution

    |

  3. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  4. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  5. Prove that Sigma(r=0)^(n) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  6. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  7. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  8. If (1+x+x^(2))^(n)=1 +a(1)x+a(2)x^(2)+a(3)x^(3) +……..+a(2n).x^(2...

    Text Solution

    |

  9. Using binomial theorem, prove that 2^(3n)-7n-1 is divisible by 49 , wh...

    Text Solution

    |

  10. Expand using binomial theorem: (i) (1-2x)^(4)

    Text Solution

    |

  11. Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6...

    Text Solution

    |

  12. Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the...

    Text Solution

    |

  13. Expand (x+y)^(4)-(x-y)^(4). Hence find the value of (3+sqrt(5))^(4) -(...

    Text Solution

    |

  14. Find the values of the following using binomial theorem: (i) 49^(4)...

    Text Solution

    |

  15. By using binomial theorem find which number is greater (1.2)^(3000) " ...

    Text Solution

    |

  16. Prove that Sigma(r=1) ""^(n)C(r).3^(r)=4^(n)

    Text Solution

    |

  17. If n is a positive integer then find the number of terms in the expans...

    Text Solution

    |

  18. Find the number of terms in the expansion of (1+3x+3x^(2)+x^(3))^(15)

    Text Solution

    |

  19. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |

  20. By using binomial theorem prove that (2^(3n)-7n-1) is divisible by ...

    Text Solution

    |