Home
Class 11
MATHS
Find (a+b)^4-(a-b)^4dot Hence evaluate (...

Find `(a+b)^4-(a-b)^4dot` Hence evaluate `(sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4`

Text Solution

Verified by Experts

The correct Answer is:
N/a

From binomial theorem,
`:. (a+b)^(4)=.^(4)C_(0)a^(4)b^(0)+.^(4)C_(1)a^(3)b^(1)+.^(2)C_(2)a^(2)b^(2)+.^(4)C_(3)a^(1)b^(3)+.^(4)C_(4)a^(0)b^(4)`
`=.^(4)C_(0)a^(4)+.^(4)C_(1)a^(3)b+.^(4)C_(2)a^(2)b^(2)+.^(4)C_(3)ab^(3)+.^(4)C_(4)b^(4)`
and `(a-b)^(4)=.^(4)C_(0)a^(4)(-b)^(0)+.^(4)C_(1)a^(3)(-b)^(1)+.^(4)C_(2)a^(2)(-b)^(2)+.^(4)C_(3)a^(1)(-b)^(3)+.^(4)C_(4)a^(0)(-b)^(4)`
`=.^(4)C_(0)a^(4)-.^(4)C_(1)a^(3)b+.^(4)C_(2)a^(2)b^(2)-.^(4)C_(3)ab^(3)+.^(4)C_(4)b^(4)`
`:. (a+b)^(4)-(a-b)^(4)`
`=(.^(4)C_(0)a^(4)+.^(4)C_(1)a^(3)b+.^(4)C_(2)a^(2)b^(2)+.^(4)C_(3)ab^(3)+.^(4)C_(4)b^(4)) - (.^(4)C_(0)a^(4)-.^(4)C_(1)a^(3)b+.^(4)C_(2)a^(2)b^(2)-.^(4)C_(3)ab^(3)+.^(4)C_(4)b^(4))`
`=2 .^(4)C_(1)a^(3)b+2.^(4)C_(3)ab^(3) = 2ab[.^(4)C_(1)a^(2)+.^(4)C_(3)b^(2)]`
`=2ab[4a^(2)+4b^(2)]=8ab(a^(2)+b^(2))`
Therefore, `(a+b)^(4)-(a-b)^(4)=8ab(a^(2)+b^(2))`
put `a=sqrt(3)` and `b=sqrt(2)`,
`(sqrt(3)+sqrt(2))^(4)-(sqrt(3)-sqrt(2))^(4)=8sqrt(3).sqrt(2)(3+2)`
`=8sqrt(6).(5)=40sqrt(6)`.
Therefore, `(sqrt(3)+sqrt(2))^(4)-(sqrt(3)-sqrt(2))^(4)=40sqrt(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Find (a+b)^4-(a-b)^4 . Hence, evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4 .

Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

Evaluate (sqrt(3)-sqrt(2))^6+(sqrt(3)+sqrt(2))^6dot

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

Evaluate the sqrt(4+sqrt(144))

Evaluate: sqrt (4-x^2)

Find (1+x)^(4) + (1-x)^(4) . Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(4)

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Evaluate : (4+3sqrt(-20))^(1//2)+(4-3 sqrt(-20))^(1//2)