Home
Class 11
MATHS
Prove that Sigma(r=0)^(n) 3^(r)""^(n)C(r...

Prove that `Sigma_(r=0)^(n) 3^(r)""^(n)C_(r)=4^(n)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`L.H.S =overset(n)underset(r=0)(Sigma).^(n)C_(r).3^(r)=^(n)C_(0).3^(0)+^(n)C_(1).3^(1)`
`+^(n)C_(2).3^(2)+......+^(n)C_(2).3^(n)`
`=(1+3)^(n)=4^(n)=R.H.S` Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Prove that Sigma_(r=0)^(n) ""^(n)C_(r).3^(r)=4^(n)

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

In a DeltaABC , prove that Sigma_(r=0)^(n)""^(n)C_(r)a^(r)b^(n-r) cos ( r B-(n-r)A)=c^(n) .

Prove that Sigma_(r=1) ""^(n)C_(r).3^(r)=4^(n)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Prove that sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

If ((n),(r )) "denotes " ""^nC_r then (a) Evalutae : 2^(15)((30),(0))((30),(1))-2^(14)((30),(1))((29),(14))+2^(13)((30),(2))((28),(13)).......-((30),(15))((15),(0)) ( b) Prove that : Sigma_(r=1)^(n) ((n-1),(n-r))((n),(r))=((2n-1),(n-1)) ( c) Prove that : ((n),(r))((r),(k))=((n),(k))((n-r),(r-k))