Home
Class 11
MATHS
Find the value of (a^2+sqrt(a^2-1))^4+(a...

Find the value of `(a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

From binomial theorem
`"("a^(2)+sqrt(a^(2)-1)")"^(4)`
`=^(4)C_(0)(a^(2))^(4)+^(4)C_(1)(a^(2))^(3)sqrt(a^(2)-1)+^(4)C_(2)(a^(2))^(2)`
`"0("sqrt(a^(2)-1)")"^(2)+^(4)C_(3)(a^(2))^(1)"("sqrt(a^(2)-1)")"^(3)+^(4)C_(4)"("sqrt(a^(2)-1)")"^(4)`
`=1.a^(8)+4.a^(6)sqrt(a^(2)-1)+6a^(4)(a^(2)-1))`
`+4a^(2)(a^(2)-1)sqrt(a^(2)-1)+(a^(2)-1)^(2)`
`:. (a^(2)+sqrt(a^(2)-1))^(4)`
`=a^(8)+4a^(6)sqrt(a^(2-1))+6a^(2)-1)^(2)`
Similarly,
`(a^(2)-sqrt(a^(2)-1))^(4)=a^(8)-4a^(6)sqrt(a^(2)-1)+6a^(4)(a^(2)-1)`
`-4a^(2)(a^(2)-1)sqrt(a^(2)-1)+(a^(2)-1)^(2)`
`:. (a^(2)+sqrt(a^(2)-1))^(4)+(a^(2)-sqrt(a^(2)-1))^(4)`
`=2a^(8)+12a^(4)(a^(2)-1)+2(a^(2)-1)^(2)`
`=2a^(8)+12a^(6)=12a^(4)+2a^(4)-4a^(2)+2`
`=2a^(8)+12a^(6)-10a^(4)-4a^(2)+2`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 8.2|24 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

4.Find the value of "1/(sqrt5+sqrt2)

Evaluate the following: \ {a^2+sqrt(a^2-1)}^4+{a^2-sqrt(a^2-1)}^4

Find the value of ( sqrt(2) + 1)^(6) + ( sqrt(2) - 1)^(6) and show that the value of ( sqrt(2) + 1)^(6) lies between 197 and 198.

Find the value of sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))] =

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

If sqrt(2)=1.414,sqrt(3)=1.732 , find the value of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)" "(ii)(sqrt(3)-1)/(sqrt(3)+1)" "(iii)(2+sqrt(6))/(sqrt(2))

Find the Value of \ sqrt(2+sqrt(2+2cos4theta))

Find the value of 4cos[cos^(-1)((1)/(4)(sqrt(6)-sqrt(2)))-cos^(-1)((1)/(4)(sqrt(6)+sqrt(2)))] .

if sqrt2=1.414and sqrt3=1.732 then find the value of 4/(3sqrt3-2sqrt2)+3/(3sqrt3+2sqrt2)

Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(4-sqrt(x^2))

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  2. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  3. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  4. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  5. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  6. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  7. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  8. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  9. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  10. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  11. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  12. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  13. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  14. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  15. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  16. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  17. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  18. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  19. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  20. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |