Home
Class 11
MATHS
Expand using Binomial Theorem (1+x/2-2/x...

Expand using Binomial Theorem `(1+x/2-2/x)^4,x!=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((1 + \frac{x}{2} - \frac{2}{x})^4\) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify the terms We can rewrite the expression as: \[ (1 + \frac{x}{2} - \frac{2}{x})^4 = (1 + \frac{x}{2} + (-\frac{2}{x}))^4 \] Let \(a = 1\), \(b = \frac{x}{2}\), and \(c = -\frac{2}{x}\). ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, the expansion of \((a + b + c)^n\) can be expressed as: \[ \sum_{i+j+k=n} \frac{n!}{i!j!k!} a^i b^j c^k \] where \(i + j + k = n\). For our case, \(n = 4\), so we will consider all combinations of \(i\), \(j\), and \(k\) such that \(i + j + k = 4\). ### Step 3: Calculate the coefficients We will calculate the contributions for each \(i\), \(j\), and \(k\): 1. **For \(i = 4, j = 0, k = 0\)**: \[ \frac{4!}{4!0!0!} (1)^4 \left(\frac{x}{2}\right)^0 \left(-\frac{2}{x}\right)^0 = 1 \] 2. **For \(i = 3, j = 1, k = 0\)**: \[ \frac{4!}{3!1!0!} (1)^3 \left(\frac{x}{2}\right)^1 \left(-\frac{2}{x}\right)^0 = 4 \cdot \frac{x}{2} = 2x \] 3. **For \(i = 2, j = 2, k = 0\)**: \[ \frac{4!}{2!2!0!} (1)^2 \left(\frac{x}{2}\right)^2 \left(-\frac{2}{x}\right)^0 = 6 \cdot \frac{x^2}{4} = \frac{3x^2}{2} \] 4. **For \(i = 2, j = 1, k = 1\)**: \[ \frac{4!}{2!1!1!} (1)^2 \left(\frac{x}{2}\right)^1 \left(-\frac{2}{x}\right)^1 = 12 \cdot \frac{x}{2} \cdot -\frac{2}{x} = -12 \] 5. **For \(i = 1, j = 3, k = 0\)**: \[ \frac{4!}{1!3!0!} (1)^1 \left(\frac{x}{2}\right)^3 \left(-\frac{2}{x}\right)^0 = 4 \cdot \frac{x^3}{8} = \frac{x^3}{2} \] 6. **For \(i = 1, j = 2, k = 1\)**: \[ \frac{4!}{1!2!1!} (1)^1 \left(\frac{x}{2}\right)^2 \left(-\frac{2}{x}\right)^1 = 12 \cdot \frac{x^2}{4} \cdot -\frac{2}{x} = -6x \] 7. **For \(i = 0, j = 4, k = 0\)**: \[ \frac{4!}{0!4!0!} (1)^0 \left(\frac{x}{2}\right)^4 \left(-\frac{2}{x}\right)^0 = \frac{x^4}{16} \] 8. **For \(i = 0, j = 3, k = 1\)**: \[ \frac{4!}{0!3!1!} (1)^0 \left(\frac{x}{2}\right)^3 \left(-\frac{2}{x}\right)^1 = -\frac{8}{x} \] 9. **For \(i = 0, j = 2, k = 2\)**: \[ \frac{4!}{0!2!2!} (1)^0 \left(\frac{x}{2}\right)^2 \left(-\frac{2}{x}\right)^2 = 6 \cdot \frac{x^2}{4} \cdot \frac{4}{x^2} = 6 \] 10. **For \(i = 0, j = 1, k = 3\)**: \[ \frac{4!}{0!1!3!} (1)^0 \left(\frac{x}{2}\right)^1 \left(-\frac{2}{x}\right)^3 = -\frac{8}{x^2} \] 11. **For \(i = 0, j = 0, k = 4\)**: \[ \frac{4!}{0!0!4!} (1)^0 \left(\frac{x}{2}\right)^0 \left(-\frac{2}{x}\right)^4 = \frac{16}{x^4} \] ### Step 4: Combine all terms Now, we can combine all the terms we calculated: \[ 1 + 2x + \frac{3x^2}{2} - 12 + \frac{x^3}{2} - 6x + \frac{x^4}{16} - \frac{8}{x} + 6 - \frac{8}{x^2} + \frac{16}{x^4} \] ### Step 5: Simplify the expression Combining like terms: - Constant terms: \(1 - 12 + 6 = -5\) - Coefficient of \(x\): \(2x - 6x = -4x\) - Coefficient of \(x^2\): \(\frac{3x^2}{2} + 6 = \frac{3x^2 + 12}{2} = \frac{3x^2 + 12}{2}\) - Coefficient of \(x^3\): \(\frac{x^3}{2}\) - Coefficient of \(x^4\): \(\frac{x^4}{16}\) - Coefficient of \(\frac{1}{x}\): \(-\frac{8}{x}\) - Coefficient of \(\frac{1}{x^2}\): \(-\frac{8}{x^2}\) - Coefficient of \(\frac{1}{x^4}\): \(\frac{16}{x^4}\) Thus, the final expanded form is: \[ \frac{x^4}{16} + \frac{x^3}{2} + \frac{3x^2 + 12}{2} - 4x - 5 - \frac{8}{x} - \frac{8}{x^2} + \frac{16}{x^4} \]

To expand the expression \((1 + \frac{x}{2} - \frac{2}{x})^4\) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify the terms We can rewrite the expression as: \[ (1 + \frac{x}{2} - \frac{2}{x})^4 = (1 + \frac{x}{2} + (-\frac{2}{x}))^4 \] Let \(a = 1\), \(b = \frac{x}{2}\), and \(c = -\frac{2}{x}\). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 8.2|24 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Expand using binomial theorem: (i) (1-2x)^(4)

Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (1+(1)/(x^(2)))^(4)

Expand the following by binomial theorem: (x^2+2/x)^4, x!=0

Expand the following by binomial theorem: (1-2x)^5

Expand the following by binomial theorem: (1-x)^6

Expand the following by binomial theorem: (x^2+3/x)^5, x!=0

Expand the following by binomial theorem: (x+ 1/x)^7

Expand the following by binomial theorem: (x/3+1/x)^5

Expand the following using binomial theorem (2/3 x + 7/4y)^5

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  2. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  3. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  4. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  5. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  6. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  7. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  8. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  9. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  10. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  11. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  12. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  13. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  14. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  15. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  16. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  17. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  18. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  19. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  20. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |