Home
Class 12
MATHS
if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and ...

`if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}],`then show that AB=BA.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( AB = BA \) for the given matrices \( A \) and \( B \), we will perform matrix multiplication for both \( AB \) and \( BA \) and compare the results. ### Step 1: Define the matrices Let: \[ A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{pmatrix} \] ### Step 2: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1 \end{pmatrix} \begin{pmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 1 \cdot (-2) + 3 \cdot (-1) + (-1) \cdot (-6) = -2 - 3 + 6 = 1 \] - First row, second column: \[ 1 \cdot 3 + 3 \cdot 2 + (-1) \cdot 9 = 3 + 6 - 9 = 0 \] - First row, third column: \[ 1 \cdot (-1) + 3 \cdot (-1) + (-1) \cdot (-4) = -1 - 3 + 4 = 0 \] - Second row, first column: \[ 2 \cdot (-2) + 2 \cdot (-1) + (-1) \cdot (-6) = -4 - 2 + 6 = 0 \] - Second row, second column: \[ 2 \cdot 3 + 2 \cdot 2 + (-1) \cdot 9 = 6 + 4 - 9 = 1 \] - Second row, third column: \[ 2 \cdot (-1) + 2 \cdot (-1) + (-1) \cdot (-4) = -2 - 2 + 4 = 0 \] - Third row, first column: \[ 3 \cdot (-2) + 0 \cdot (-1) + (-1) \cdot (-6) = -6 + 0 + 6 = 0 \] - Third row, second column: \[ 3 \cdot 3 + 0 \cdot 2 + (-1) \cdot 9 = 9 + 0 - 9 = 0 \] - Third row, third column: \[ 3 \cdot (-1) + 0 \cdot (-1) + (-1) \cdot (-4) = -3 + 0 + 4 = 1 \] Thus, we have: \[ AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \( BA \) Now, we calculate \( BA \): \[ BA = \begin{pmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ -2 \cdot 1 + 3 \cdot 2 + (-1) \cdot 3 = -2 + 6 - 3 = 1 \] - First row, second column: \[ -2 \cdot 3 + 3 \cdot 2 + (-1) \cdot 0 = -6 + 6 + 0 = 0 \] - First row, third column: \[ -2 \cdot (-1) + 3 \cdot (-1) + (-1) \cdot (-1) = 2 - 3 + 1 = 0 \] - Second row, first column: \[ -1 \cdot 1 + 2 \cdot 2 + (-1) \cdot 3 = -1 + 4 - 3 = 0 \] - Second row, second column: \[ -1 \cdot 3 + 2 \cdot 2 + (-1) \cdot 0 = -3 + 4 + 0 = 1 \] - Second row, third column: \[ -1 \cdot (-1) + 2 \cdot (-1) + (-1) \cdot (-1) = 1 - 2 + 1 = 0 \] - Third row, first column: \[ -6 \cdot 1 + 9 \cdot 2 + (-4) \cdot 3 = -6 + 18 - 12 = 0 \] - Third row, second column: \[ -6 \cdot 3 + 9 \cdot 2 + (-4) \cdot 0 = -18 + 18 + 0 = 0 \] - Third row, third column: \[ -6 \cdot (-1) + 9 \cdot (-1) + (-4) \cdot (-1) = 6 - 9 + 4 = 1 \] Thus, we have: \[ BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Conclusion Since \( AB = BA \), we conclude that: \[ AB = BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

To show that \( AB = BA \) for the given matrices \( A \) and \( B \), we will perform matrix multiplication for both \( AB \) and \( BA \) and compare the results. ### Step 1: Define the matrices Let: \[ A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 2 & -1 \\ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.