Home
Class 12
MATHS
[{:(2,1),(1,1):}] find the inverse of ma...

`[{:(2,1),(1,1):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), we will use the method of row operations to convert the matrix into the identity matrix while applying the same operations to the identity matrix. ### Step-by-Step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \([A | I]\), where \(I\) is the identity matrix: \[ \left( \begin{array}{cc|cc} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array} \right) \] 2. **Make the First Pivot 1**: To make the first element of the first row (the pivot) equal to 1, we can divide the first row by 2: \[ R_1 = \frac{1}{2} R_1 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 1 & 0 & 1 \end{array} \right) \] 3. **Eliminate the First Column of the Second Row**: Now, we need to make the first element of the second row equal to 0. We can do this by subtracting the first row from the second row: \[ R_2 = R_2 - R_1 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 1 \end{array} \right) \] 4. **Make the Second Pivot 1**: Next, we make the pivot in the second row equal to 1 by multiplying the second row by 2: \[ R_2 = 2 R_2 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & -1 & 2 \end{array} \right) \] 5. **Eliminate the Second Column of the First Row**: Finally, we need to eliminate the second column of the first row. We do this by subtracting \(\frac{1}{2}\) times the second row from the first row: \[ R_1 = R_1 - \frac{1}{2} R_2 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \end{array} \right) \] 6. **Read the Inverse Matrix**: The left side of the augmented matrix is now the identity matrix, and the right side gives us the inverse of \(A\): \[ A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \( A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \) is: \[ A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \), we will use the method of row operations to convert the matrix into the identity matrix while applying the same operations to the identity matrix. ### Step-by-Step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \([A | I]\), where \(I\) is the identity matrix: \[ \left( \begin{array}{cc|cc} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

By using elementary operations, find the inverse of the matrix A=[[1, 2], [2, -1]] .

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformation, find the inverse of the matrix ({:(2, -1, 1), (-1, 2, -1), (1, -1, 2):})