Home
Class 12
MATHS
[{:(2,3),(5,7):}] find the inverse of t...

`[{:(2,3),(5,7):}]` find the inverse of the matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}\), we will use the method of row operations. Let's denote the matrix as \(A\). ### Step 1: Set up the augmented matrix We start with the matrix \(A\) and augment it with the identity matrix: \[ \left( \begin{array}{cc|cc} 2 & 3 & 1 & 0 \\ 5 & 7 & 0 & 1 \end{array} \right) \] ### Step 2: Make the leading coefficient of the first row equal to 1 To make the leading coefficient of the first row equal to 1, we divide the entire first row by 2: \[ R_1 \rightarrow \frac{1}{2} R_1 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{3}{2} & \frac{1}{2} & 0 \\ 5 & 7 & 0 & 1 \end{array} \right) \] ### Step 3: Eliminate the first element of the second row Next, we want to eliminate the first element of the second row. We can do this by replacing the second row with \(R_2 - 5R_1\): \[ R_2 \rightarrow R_2 - 5R_1 \] Calculating this gives: \[ \left( \begin{array}{cc|cc} 1 & \frac{3}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 1 \end{array} \right) \] ### Step 4: Make the leading coefficient of the second row equal to 1 Now, we need to make the leading coefficient of the second row equal to 1. We can do this by multiplying the second row by -2: \[ R_2 \rightarrow -2R_2 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & \frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 5 & -2 \end{array} \right) \] ### Step 5: Eliminate the second element of the first row Next, we want to eliminate the second element of the first row. We can do this by replacing the first row with \(R_1 - \frac{3}{2}R_2\): \[ R_1 \rightarrow R_1 - \frac{3}{2}R_2 \] Calculating this gives: \[ \left( \begin{array}{cc|cc} 1 & 0 & -\frac{7}{2} & 3 \\ 0 & 1 & 5 & -2 \end{array} \right) \] ### Step 6: Write the inverse matrix Now we can write the inverse matrix from the augmented part: \[ A^{-1} = \begin{pmatrix} -\frac{7}{2} & 3 \\ 5 & -2 \end{pmatrix} \] ### Final Answer The inverse of the matrix \(\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}\) is: \[ A^{-1} = \begin{pmatrix} -\frac{7}{2} & 3 \\ 5 & -2 \end{pmatrix} \]

To find the inverse of the matrix \(\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}\), we will use the method of row operations. Let's denote the matrix as \(A\). ### Step 1: Set up the augmented matrix We start with the matrix \(A\) and augment it with the identity matrix: \[ \left( \begin{array}{cc|cc} 2 & 3 & 1 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(4,5),(3,4):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

Find the inverse of the matrix A= [(3,1),(4,2)]

[{:(2,-6),( 1,-2):}] find inverse of matrix

Find the inverse of the matrix |[2,-1], [3, 4]| .

Using elementary transformations, find the inverse of the matrix [[2 ,3], [5, 7]]