Home
Class 12
MATHS
[{:(3,1),(5,2):}] using elementry method...

`[{:(3,1),(5,2):}]` using elementry method find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \) using the elementary method, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to convert \( A \) into \( I \). The augmented matrix will look like this: \[ \left( \begin{array}{cc|cc} 3 & 1 & 1 & 0 \\ 5 & 2 & 0 & 1 \end{array} \right) \] ### Step 1: Make the leading coefficient of the first row equal to 1 To do this, we divide the first row by 3: \[ R_1 = \frac{1}{3} R_1 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{3} & \frac{1}{3} & 0 \\ 5 & 2 & 0 & 1 \end{array} \right) \] ### Step 2: Eliminate the first element of the second row Next, we want to make the first element of the second row equal to 0. We can do this by replacing the second row with \( R_2 - 5R_1 \): \[ R_2 = R_2 - 5R_1 \] Calculating this gives: \[ R_2 = \begin{pmatrix} 5 & 2 & 0 & 1 \end{pmatrix} - 5 \begin{pmatrix} 1 & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{3} & -\frac{5}{3} & 1 \end{pmatrix} \] So the augmented matrix now looks like: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & -\frac{5}{3} & 1 \end{array} \right) \] ### Step 3: Make the leading coefficient of the second row equal to 1 Now, we will multiply the second row by 3: \[ R_2 = 3R_2 \] This gives us: \[ \left( \begin{array}{cc|cc} 1 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -5 & 3 \end{array} \right) \] ### Step 4: Eliminate the second element of the first row We need to make the second element of the first row equal to 0. We can do this by replacing the first row with \( R_1 - \frac{1}{3}R_2 \): \[ R_1 = R_1 - \frac{1}{3}R_2 \] Calculating this gives: \[ R_1 = \begin{pmatrix} 1 & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 0 & 1 & -5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & -1 \end{pmatrix} \] So the augmented matrix now looks like: \[ \left( \begin{array}{cc|cc} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 3 \end{array} \right) \] ### Conclusion The left side of the augmented matrix is now the identity matrix, and the right side gives us the inverse of the original matrix \( A \): \[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \) using the elementary method, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to convert \( A \) into \( I \). The augmented matrix will look like this: \[ \left( \begin{array}{cc|cc} 3 & 1 & 1 & 0 \\ 5 & 2 & 0 & 1 \end{array} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(2,5),(1,3):}] using elementary method find the inverse of the matrix

By using elementary operations, find the inverse of the matrix A=[[1, 2], [2, -1]] .

Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-5],[ 2, 5, 0]]

Using elementary transformations, find the inverse of the matrix [[2 ,3], [5, 7]]

Using elementary transformation, find the inverse of the matrix [[10, -2] , [-5, -1]]

Using elementary row transformation find the inverse of the matrix A=[3 -1 -2 2 0 -1 3 -5 0]

Using elementary row transformation find the inverse of the matrix A=[3 -1 -2 2 0 -1 3 -5 0]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]