Home
Class 12
MATHS
[{:(4,5),(3,4):}] find the inverse of ma...

`[{:(4,5),(3,4):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}\), we will use the method of row reduction to transform the matrix into the identity matrix while applying the same operations to the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: We start with the matrix \( A = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). We form the augmented matrix \(\begin{pmatrix} 4 & 5 & | & 1 & 0 \\ 3 & 4 & | & 0 & 1 \end{pmatrix}\). **Hint**: Write the augmented matrix with the original matrix on the left and the identity matrix on the right. 2. **Perform row operations to get a leading 1 in the first row**: Divide the first row by 4: \[ R_1 = \frac{1}{4} R_1 \Rightarrow \begin{pmatrix} 1 & \frac{5}{4} & | & \frac{1}{4} & 0 \\ 3 & 4 & | & 0 & 1 \end{pmatrix} \] **Hint**: To create a leading 1, you can divide the entire row by the leading coefficient. 3. **Eliminate the first column of the second row**: Replace the second row by subtracting 3 times the first row from it: \[ R_2 = R_2 - 3R_1 \Rightarrow \begin{pmatrix} 1 & \frac{5}{4} & | & \frac{1}{4} & 0 \\ 0 & -\frac{1}{4} & | & -\frac{3}{4} & 1 \end{pmatrix} \] **Hint**: Use row operations to eliminate the elements below the leading 1. 4. **Get a leading 1 in the second row**: Multiply the second row by -4: \[ R_2 = -4R_2 \Rightarrow \begin{pmatrix} 1 & \frac{5}{4} & | & \frac{1}{4} & 0 \\ 0 & 1 & | & 3 & -4 \end{pmatrix} \] **Hint**: Normalize the second row to create a leading 1. 5. **Eliminate the second column of the first row**: Replace the first row by subtracting \(\frac{5}{4}\) times the second row: \[ R_1 = R_1 - \frac{5}{4}R_2 \Rightarrow \begin{pmatrix} 1 & 0 & | & -\frac{11}{4} & 5 \\ 0 & 1 & | & 3 & -4 \end{pmatrix} \] **Hint**: Use row operations again to eliminate the second column in the first row. 6. **Final augmented matrix**: The augmented matrix now looks like this: \[ \begin{pmatrix} 1 & 0 & | & -\frac{11}{4} & 5 \\ 0 & 1 & | & 3 & -4 \end{pmatrix} \] Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{11}{4} & 5 \\ 3 & -4 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \(\begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}\) is: \[ \begin{pmatrix} -\frac{11}{4} & 5 \\ 3 & -4 \end{pmatrix} \]

To find the inverse of the matrix \(\begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}\), we will use the method of row reduction to transform the matrix into the identity matrix while applying the same operations to the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: We start with the matrix \( A = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). We form the augmented matrix \(\begin{pmatrix} 4 & 5 & | & 1 & 0 \\ 3 & 4 & | & 0 & 1 \end{pmatrix}\). **Hint**: Write the augmented matrix with the original matrix on the left and the identity matrix on the right. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

If A = [[0 , 1, -1],[4, -3, 4],[3, -3, 4]] find the transpose of A matrix

If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}] find the matrix 'X' and matrix Y.

Using elementary transformations, find the inverse of the matrix [[4, 5],[ 3, 4]]