Home
Class 12
MATHS
[{:(3,10),(2,7):}] find the inverse of m...

`[{:(3,10),(2,7):}]` find the inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix} \), we will use the method of row operations to transform the matrix into the identity matrix while applying the same operations to an identity matrix. ### Step-by-step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 3 & 10 & | & 1 & 0 \\ 2 & 7 & | & 0 & 1 \end{pmatrix} \] 2. **Row Operation to Get Leading 1 in Row 1**: We want to make the leading coefficient of the first row a 1. We can do this by dividing the entire first row by 3: \[ R_1 = \frac{1}{3} R_1 \implies \begin{pmatrix} 1 & \frac{10}{3} & | & \frac{1}{3} & 0 \\ 2 & 7 & | & 0 & 1 \end{pmatrix} \] 3. **Eliminate the First Column of Row 2**: Now we will eliminate the first column of the second row. We can do this by replacing \( R_2 \) with \( R_2 - 2R_1 \): \[ R_2 = R_2 - 2R_1 \implies \begin{pmatrix} 1 & \frac{10}{3} & | & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & | & -\frac{2}{3} & 1 \end{pmatrix} \] 4. **Row Operation to Get Leading 1 in Row 2**: Now we need to make the leading coefficient of the second row a 1. We can do this by multiplying the second row by 3: \[ R_2 = 3R_2 \implies \begin{pmatrix} 1 & \frac{10}{3} & | & \frac{1}{3} & 0 \\ 0 & 1 & | & -2 & 3 \end{pmatrix} \] 5. **Eliminate the Second Column of Row 1**: Now we will eliminate the second column of the first row. We can do this by replacing \( R_1 \) with \( R_1 - \frac{10}{3}R_2 \): \[ R_1 = R_1 - \frac{10}{3}R_2 \implies \begin{pmatrix} 1 & 0 & | & 7 & -10 \\ 0 & 1 & | & -2 & 3 \end{pmatrix} \] 6. **Final Result**: The left side of the augmented matrix is now the identity matrix, and the right side gives us the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} 7 & -10 \\ -2 & 3 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 7 & -10 \\ -2 & 3 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix} \), we will use the method of row operations to transform the matrix into the identity matrix while applying the same operations to an identity matrix. ### Step-by-step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 3 & 10 & | & 1 & 0 \\ 2 & 7 & | & 0 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(4,5),(3,4):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

[{:(2,-6),( 1,-2):}] find inverse of matrix

If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),(,-8):}] find the matrix 'X' and matrix Y.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.