Home
Class 12
MATHS
Using elementary transformations, find t...

Using elementary transformations, find the inverse of the matrix`[[3,-1],[-4, 2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). ### Step 1: Set up the augmented matrix We start with the augmented matrix \( [A | I] \): \[ \begin{bmatrix} 3 & -1 & | & 1 & 0 \\ -4 & 2 & | & 0 & 1 \end{bmatrix} \] ### Step 2: Make the leading coefficient of the first row equal to 1 To make the leading coefficient of the first row equal to 1, we can divide the first row by 3: \[ R_1 \rightarrow \frac{1}{3} R_1 \] This gives us: \[ \begin{bmatrix} 1 & -\frac{1}{3} & | & \frac{1}{3} & 0 \\ -4 & 2 & | & 0 & 1 \end{bmatrix} \] ### Step 3: Eliminate the first column of the second row Next, we want to eliminate the first column of the second row. We can do this by adding 4 times the first row to the second row: \[ R_2 \rightarrow R_2 + 4R_1 \] This results in: \[ \begin{bmatrix} 1 & -\frac{1}{3} & | & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & | & \frac{4}{3} & 1 \end{bmatrix} \] ### Step 4: Make the leading coefficient of the second row equal to 1 Now, we need to make the leading coefficient of the second row equal to 1 by multiplying the second row by \( \frac{3}{2} \): \[ R_2 \rightarrow \frac{3}{2} R_2 \] This gives us: \[ \begin{bmatrix} 1 & -\frac{1}{3} & | & \frac{1}{3} & 0 \\ 0 & 1 & | & 2 & \frac{3}{2} \end{bmatrix} \] ### Step 5: Eliminate the second column of the first row Finally, we eliminate the second column of the first row by adding \( \frac{1}{3} \) times the second row to the first row: \[ R_1 \rightarrow R_1 + \frac{1}{3} R_2 \] This results in: \[ \begin{bmatrix} 1 & 0 & | & 1 & \frac{1}{2} \\ 0 & 1 & | & 2 & \frac{3}{2} \end{bmatrix} \] ### Step 6: Read the inverse from the augmented matrix The left side of the augmented matrix is now the identity matrix, and the right side gives us the inverse of \( A \): \[ A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{bmatrix} \] ### Final Result Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{bmatrix} \]

To find the inverse of the matrix \( A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). ### Step 1: Set up the augmented matrix We start with the augmented matrix \( [A | I] \): \[ \begin{bmatrix} 3 & -1 & | & 1 & 0 \\ -4 & 2 & | & 0 & 1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [[2 ,1],[ 4, 2]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[6,-3],[-2, 1]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 7, 4]]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

Using elementary transformations, find the inverse of the matrix [[1, 3],[ 2, 7]]