Home
Class 12
MATHS
[{:(2,-6),( 1,-2):}] find inverse of mat...

`[{:(2,-6),( 1,-2):}]` find inverse of matrix

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -6 \\ 1 & -2 \end{pmatrix} \), we will use the method of elementary row operations. The inverse of a matrix \( A \) is denoted as \( A^{-1} \), and it satisfies the equation \( A A^{-1} = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: We start by setting up the augmented matrix \([A | I]\): \[ \begin{pmatrix} 2 & -6 & | & 1 & 0 \\ 1 & -2 & | & 0 & 1 \end{pmatrix} \] 2. **Make the leading coefficient of the first row equal to 1**: We can achieve this by dividing the first row by 2: \[ R_1 \leftarrow \frac{1}{2} R_1 \] This gives us: \[ \begin{pmatrix} 1 & -3 & | & \frac{1}{2} & 0 \\ 1 & -2 & | & 0 & 1 \end{pmatrix} \] 3. **Eliminate the first element of the second row**: We subtract the first row from the second row: \[ R_2 \leftarrow R_2 - R_1 \] This results in: \[ \begin{pmatrix} 1 & -3 & | & \frac{1}{2} & 0 \\ 0 & 1 & | & -\frac{1}{2} & 1 \end{pmatrix} \] 4. **Make the leading coefficient of the second row equal to 1**: The leading coefficient of the second row is already 1, so we can proceed to eliminate the second element of the first row: \[ R_1 \leftarrow R_1 + 3R_2 \] This gives us: \[ \begin{pmatrix} 1 & 0 & | & \frac{1}{2} + 3(-\frac{1}{2}) & 3 \\ 0 & 1 & | & -\frac{1}{2} & 1 \end{pmatrix} \] Simplifying the first row: \[ \begin{pmatrix} 1 & 0 & | & -\frac{1}{2} & 3 \\ 0 & 1 & | & -\frac{1}{2} & 1 \end{pmatrix} \] 5. **Final adjustments**: We can express the inverse matrix from the augmented matrix: \[ A^{-1} = \begin{pmatrix} -\frac{1}{2} & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{1}{2} & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -6 \\ 1 & -2 \end{pmatrix} \), we will use the method of elementary row operations. The inverse of a matrix \( A \) is denoted as \( A^{-1} \), and it satisfies the equation \( A A^{-1} = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: We start by setting up the augmented matrix \([A | I]\): \[ \begin{pmatrix} 2 & -6 & | & 1 & 0 \\ 1 & -2 & | & 0 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

[{:(2,1),(4,2):}] find the inverse of matrix

[{:(2,1),(1,1):}] find the inverse of matrix

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(1,3),(2,7):}] find the inverse of matrix

[{:(4,5),(3,4):}] find the inverse of matrix

[{:(3,10),(2,7):}] find the inverse of matrix

[{:(2,3),(5,7):}] find the inverse of the matrix

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary operations.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0