Home
Class 12
MATHS
If A=[{:(2,-3),(-1,2):}] then A^(-1)=...

If `A=[{:(2,-3),(-1,2):}]` then `A^(-1)=`

A

`[{:(2,-3),( -1,2):}]`

B

`[{:(2,3),( 1,2):}]`

C

`[{:( -1,2),(2,-3):}]`

D

`[{:( 1,2),(2,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \), we can use the method of row reduction to convert the augmented matrix \( [A | I] \) into the form \( [I | A^{-1}] \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ [A | I] = \left[ \begin{array}{cc|cc} 2 & -3 & 1 & 0 \\ -1 & 2 & 0 & 1 \end{array} \right] \] 2. **Make the leading coefficient of the first row equal to 1**: To do this, we can divide the first row by 2: \[ R_1 \leftarrow \frac{1}{2} R_1 \Rightarrow \left[ \begin{array}{cc|cc} 1 & -\frac{3}{2} & \frac{1}{2} & 0 \\ -1 & 2 & 0 & 1 \end{array} \right] \] 3. **Eliminate the first column of the second row**: We can add the first row to the second row: \[ R_2 \leftarrow R_2 + R_1 \Rightarrow \left[ \begin{array}{cc|cc} 1 & -\frac{3}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \end{array} \right] \] 4. **Make the leading coefficient of the second row equal to 1**: To do this, we can multiply the second row by 2: \[ R_2 \leftarrow 2 R_2 \Rightarrow \left[ \begin{array}{cc|cc} 1 & -\frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 1 & 2 \end{array} \right] \] 5. **Eliminate the second column of the first row**: We can add \(\frac{3}{2}\) times the second row to the first row: \[ R_1 \leftarrow R_1 + \frac{3}{2} R_2 \Rightarrow \left[ \begin{array}{cc|cc} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \end{array} \right] \] 6. **Final augmented matrix**: The augmented matrix is now: \[ \left[ \begin{array}{cc|cc} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 2 \end{array} \right] \] This means that: \[ A^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \] ### Final Answer: \[ A^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \), we can use the method of row reduction to convert the augmented matrix \( [A | I] \) into the form \( [I | A^{-1}] \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ [A | I] = \left[ \begin{array}{cc|cc} 2 & -3 & 1 & 0 \\ -1 & 2 & 0 & 1 \end{array} \right] \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Given A=[(5, 0, 4),( 2, 3, 2),( 1, 2, 1)] , B^(-1)=[(1, 3, 3),( 1, 4, 3),( 1, 3, 4)] . Compute (A B)^(-1) .

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .

The value of lamda so that the matric A^(-1)-lamdaI is singular where A=[{:(6,-2,2),(-2,3,-1),(2,-1,3):}]

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Using section formula, show that the points (2, -3, 4), (-1, 2,1) and (0, (1)/(3) , 2) are collinear.

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.