Home
Class 12
MATHS
Using elementary transformations find th...

Using elementary transformations find the inverse of the following matrices `[{:( 2,-3,3),(2,2,3),(3,-2,2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) of the same order and then perform row operations to transform \( A \) into \( I \). The resulting augmented matrix will give us the inverse of \( A \). ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ \left( \begin{array}{ccc|ccc} 2 & -3 & 3 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1 \end{array} \right) \] 2. **Perform the first row operation**: \( R_1 \leftarrow R_1 - R_3 \) \[ \left( \begin{array}{ccc|ccc} -1 & -1 & 1 & 1 & 0 & -1 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1 \end{array} \right) \] 3. **Multiply the first row by -1**: \( R_1 \leftarrow -1 \cdot R_1 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & -1 & -1 & 0 & 1 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1 \end{array} \right) \] 4. **Perform the second row operation**: \( R_2 \leftarrow R_2 - 2R_1 \) and \( R_3 \leftarrow R_3 - 3R_1 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & -1 & -1 & 0 & 1 \\ 0 & 0 & 5 & 2 & 1 & -2 \\ 0 & -5 & 5 & 3 & 0 & -2 \end{array} \right) \] 5. **Perform the row operation**: \( R_3 \leftarrow R_3 + R_2 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & -1 & -1 & 0 & 1 \\ 0 & 0 & 5 & 2 & 1 & -2 \\ 0 & 0 & 10 & 5 & 1 & -4 \end{array} \right) \] 6. **Multiply the second row by \( \frac{1}{5} \)**: \( R_2 \leftarrow \frac{1}{5} R_2 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & 10 & 5 & 1 & -4 \end{array} \right) \] 7. **Perform the row operation**: \( R_3 \leftarrow R_3 - 10R_2 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & 0 & 0 & -1 & 0 \end{array} \right) \] 8. **Perform the row operation**: \( R_1 \leftarrow R_1 + R_2 \) and \( R_2 \leftarrow -R_2 \) \[ \left( \begin{array}{ccc|ccc} 1 & 1 & 0 & -\frac{3}{5} & -\frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right) \] 9. **Final adjustments**: Perform necessary row operations to get the identity matrix on the left side. \[ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \end{array} \right) \] 10. **Extract the inverse matrix**: \[ A^{-1} = \begin{pmatrix} -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) of the same order and then perform row operations to transform \( A \) into \( I \). The resulting augmented matrix will give us the inverse of \( A \). ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ \left( \begin{array}{ccc|ccc} 2 & -3 & 3 & 1 & 0 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [(2,-3, 3), (2, 2, 3),( 3,-2, 2)]

Using elementary transformation, find the inverse of the following matrix: ((1,3,-2),(-3,0,-5),(2,5,0))

Using elementary transformations, find the inverse of the matrices [[2, 5],[ 1, 3]]

Using elementary row operations, find the inverse of the following matrix: [[2,5],[1, 3]]

Find the inverse of the following matrices [{:(3,-1),(-4,2):}](ii)[{:(2,-6),(1,-2):}]

Using elementary transformations, find the inverse of the matrix [[2,-3, 3],[ 2, 2, 3],[ 3,-2, 2]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrices A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?