Home
Class 12
MATHS
Using elementary transformations, fin...

Using elementary transformations, find the inverse of the matrix `(1 3-2-3 0-1 2 1 0)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`Let A= [{:(1,3,-2),(-3,0,-5),(2,5,0):}]`
` now, A=IA`
`implies [{:(1,3,-2),(-3,0,-5),(2,5,0):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]A`
`implies[{:(1,3,-2),(0,9,-11),(0,-1,4):}]=[{:(1,0,0),(3,1,0),(-2,0,1):}]A R_(1) to R_(2) +3R_(1)`
`R_(3) to R_(3) -2R_(1) `
`implies [{:( 1,3,-2),(0,-1,4),(0,9,-11):}]=[{:(1,0,0),(-2,0,1),(3,1,0):}]A R_(2) harr R_(3)`
`implies[{:( 1,3,-2),(0,1,-4),(0,9,-11):}]=[{:(-5,0,3),(2,0,-1):}]A R_(1) to R_(1) -3R_(2)`
`R_(3) to R_(3) - (R_(2)`
`implies[{:( 1,0,10),(0,1,-4),(0,0,1):}]=[{:( -5,0,3),( 2,0,-1),(-(3)/(5),(1)/(25),(9)/(25)):}]A R_(3) to (1)/(25) R_(3) `
`implies[{:( 1,0,0),(0,1,0),( 0,0,1):}]=[{:( 1,-(2)/(5),-(3)/(5) ),( -(2)/(5) ,(4)/(25) ,(11)/(25) ),(-(3)/(5) ,(1)/(25) ,(9)/(25)):}].`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-5],[ 2, 5, 0]]

Using elementary transformations, find the inverse of the matrix [[1, 3],[ 2, 7]]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[6,-3],[-2, 1]]

Using elementary transformation, find the inverse of the matrix [[10, -2] , [-5, -1]]