Home
Class 12
MATHS
Using elementary transformations, find t...

Using elementary transformations, find the inverse of the matrices `A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) of the same order and perform row operations to transform \( A \) into \( I \). The resulting transformations on \( I \) will give us \( A^{-1} \). ### Step-by-Step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 2 & 0 & -1 & | & 1 & 0 & 0 \\ 5 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{pmatrix} \] 2. **Swap Rows**: We can swap \( R_1 \) and \( R_2 \) to make the leading coefficient of the first row larger: \[ \begin{pmatrix} 5 & 1 & 0 & | & 0 & 1 & 0 \\ 2 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{pmatrix} \] 3. **Row Operation**: Perform \( R_1 \leftarrow R_1 - 2R_2 \): \[ R_1 = (5 - 2 \cdot 2, 1 - 2 \cdot 0, 0 - 2 \cdot -1 | 0 - 2 \cdot 1, 1 - 2 \cdot 0, 0 - 2 \cdot 0) \] This gives: \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 2 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{pmatrix} \] 4. **Row Operation**: Perform \( R_2 \leftarrow R_2 - 2R_1 \): \[ R_2 = (2 - 2 \cdot 1, 0 - 2 \cdot 1, -1 - 2 \cdot 2 | 1 - 2 \cdot -2, 0 - 2 \cdot 1, 0 - 2 \cdot 0) \] This gives: \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & -2 & -5 & | & 5 & -2 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{pmatrix} \] 5. **Row Operation**: Perform \( R_2 \leftarrow -\frac{1}{2}R_2 \): \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & \frac{5}{2} & | & -\frac{5}{2} & 1 & 0 \\ 0 & 1 & 3 & | & 0 & 0 & 1 \end{pmatrix} \] 6. **Row Operation**: Perform \( R_3 \leftarrow R_3 - R_2 \): \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & \frac{5}{2} & | & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} & | & \frac{5}{2} & -1 & 1 \end{pmatrix} \] 7. **Row Operation**: Perform \( R_3 \leftarrow 2R_3 \): \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & \frac{5}{2} & | & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{pmatrix} \] 8. **Row Operation**: Perform \( R_2 \leftarrow R_2 - \frac{5}{2}R_3 \): \[ \begin{pmatrix} 1 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & 0 & | & -\frac{15}{2} & 6 & -5 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{pmatrix} \] 9. **Row Operation**: Perform \( R_1 \leftarrow R_1 - 2R_3 \): \[ \begin{pmatrix} 1 & 1 & 0 & | & -12 & 5 & -4 \\ 0 & 1 & 0 & | & -\frac{15}{2} & 6 & -5 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{pmatrix} \] 10. **Final Row Operation**: Perform \( R_1 \leftarrow R_1 - R_2 \): \[ \begin{pmatrix} 1 & 0 & 0 & | & 3 & -1 & 1 \\ 0 & 1 & 0 & | & -\frac{15}{2} & 6 & -5 \\ 0 & 0 & 1 & | & 5 & -2 & 2 \end{pmatrix} \] The resulting matrix on the right side is \( A^{-1} \): \[ A^{-1} = \begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) of the same order and perform row operations to transform \( A \) into \( I \). The resulting transformations on \( I \) will give us \( A^{-1} \). ### Step-by-Step Solution: 1. **Set Up the Augmented Matrix**: We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrices [[2, 5],[ 1, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

Using elementary transformations, find the inverse of the matrix [[2, 0,-1],[ 5, 1, 0],[ 0, 1 ,3]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 1, 1]]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]

Using elementary transformations, find the inverse of the matrix [[3,-1],[-4, 2]]