Home
Class 12
MATHS
Without, prove that : |{:(1+b,b+c,c+a)...

Without, prove that :
`|{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|`

Text Solution

AI Generated Solution

To prove that \[ \left| \begin{array}{ccc} 1+b & b+c & c+a \\ p+q & q+r & r+p \\ x+y & y+z & z+x \end{array} \right| = 2 \left| \begin{array}{ccc} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4a|6 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4b|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, c],[ p, q, r],[ x, y, z]| .

If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

Using the property of determinants and without expanding, prove that: |[b+c, q+r, y+z],[ c+a, r+p, z+x],[ a+b, p+q, x+y]|=2|[a, p, x],[ b, q ,y],[ c, r, z]|

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Miscellaneous Exercise
  1. Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:...

    Text Solution

    |

  2. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  3. Without expanding the determinant, prove that |a a^2b c bb^2c a cc^2a ...

    Text Solution

    |

  4. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  5. " if a,b, and c are real number and " |{:(b+c,,c+a,,a+b),(c+a,,a+b,...

    Text Solution

    |

  6. Solve the following determinant equation: |[x+a, b, c], [c, x+b, a],...

    Text Solution

    |

  7. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  8. If A^(-1)=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  10. Evaluate |x y x+y y x+y xx+y x y| .

    Text Solution

    |

  11. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  12. Using properties of determinants. Prove that|alphaalpha^2beta+gammarho...

    Text Solution

    |

  13. For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z...

    Text Solution

    |

  14. show that |{:(3a,,-a+b,,-a+c),(-b+a ,,3b,,-b+c),( -c+a,, -c+b,,3c):}| ...

    Text Solution

    |

  15. Show that |(1, 1+p, 1+p+q), (2, 3+2p, 4+3p+2q), (3, 6+3p, 10+6p+3q)|=1...

    Text Solution

    |

  16. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  17. Solve the system of equations2/x+3/y+(10)/z=4,4/x-6/y+5/z=1,6/x+9/y-(2...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  19. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  20. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |