Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: (i) `|x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2` (ii) `|y+k y y y y+k y y y y+k|=k^2(2ydotk)^2`

Text Solution

Verified by Experts

`|{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=|{:(5x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|`
`(R_(1)toR_(1)+R_(2)+R_(3))`
`=(5x+4)|{:(1,1,1),(2x,x+4,2x),(2x,2x,x+4):}|`
`=(5x+4)|{:(0,0,1),(0,4-x,2x),(x-4,x-4,x+4):}|`
`(C_(1)toC_(1)-C_(3),C_(2)toC_(2)-C_(3))`
`=(5x+4)(40x)(4-x)|{:(0,0,1),(0,1,2x),(-1,-1,x+4):}|`
`=(5x+4)(4-x)^(2).1|{:(0,1),(-1,-1):}|`
`=(5x+4)(e-x)^(2)`
=R.H.S.
(ii) `L.H.S.=|{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|`
`=|{:(3y+k,3y+k,3y+k),(y,y+k,y),(y,y,y+k):}|`
`(R_(1)toR_(1)+R_(2)+R_(2))`
`=(3y+k)|{:(1,1,1),(y,y+k,y),(y,y,y+k):}|`
`=(3y+k)|{:(1,0,1),(0,k,y),(-k,-k,y+k):}|`
`(C_(1)toC_(1)-C_(3),C_(2)toC_(2)-C_(3))`
`=(3y+k).1|{:(0,k),(-k,-k):}|`
(Expanding along `R_(1)`)
`=(3y+k)(0+K^(2))`
`=K^(2)(3y+k)=R.H.S`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

Factorize: x^4+2x^2y^2+y^4

Given that x^2 + y^2 =4 and x^2 + y^2 -4x -4y =-4 , then x + y =

Divide: (i) x+2x^2+3x^4-x^5\ by 2x , (ii) y^4-3y^3+1/2y^2\ by 3y

Three sides of a triangle are represented by lines whose combined equation is (2x+y-4) (xy-4x-2y+8) = 0 , then the equation of its circumcircle will be : (A) x^2 + y^2 - 2x - 4y = 0 (B) x^2 + y^2 + 2x + 4y = 0 (C) x^2 + y^2 - 2x + 4y = 0 (D) x^2 + y^2 + 2x - 4y = 0

If (4x+3y)/(4x-3y)=7/4 use the properties to find the value of (2x^2-11y^2)/(2x^2+11y^2)

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.2
  1. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  2. Using the property of determinants and without expanding in questions ...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  6. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  7. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  8. By using properties of determinants. Show that:(i) |1a a^2 1bb^2 1cc^2...

    Text Solution

    |

  9. Using the properties of determinants, show that: [[x, x^2, yz],[y, y...

    Text Solution

    |

  10. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  11. By using properties of determinants. Show that:(i) |a-b-c2a2a2bb-c-a2b...

    Text Solution

    |

  12. Using properties of determinants, prove the following: |1xx^2x^2 1...

    Text Solution

    |

  13. By using properties of determinants. Show that:|1+a^2-b^2 2a b-2b2a b1...

    Text Solution

    |

  14. Using properties of determinants, prove the following: |[a^2 + 1,ab, ...

    Text Solution

    |

  15. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  16. Which of the following is correct (A) Determinant is a square matrix. ...

    Text Solution

    |